The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026003 a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288). 10

%I #42 Feb 10 2022 09:33:04

%S 1,1,3,5,13,25,63,129,321,681,1683,3653,8989,19825,48639,108545,

%T 265729,598417,1462563,3317445,8097453,18474633,45046719,103274625,

%U 251595969,579168825,1409933619,3256957317,7923848253,18359266785,44642381823

%N a(n) = T([n/2],[(n+1)/2]), where T = Delannoy triangle (A008288).

%C Number of lattice paths from (0,0) to the line x=n consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis (i.e. left factors of Schroeder paths); for example, a(3)=5, counting the paths UUU,UUD,UDU,HU and UH. - _Emeric Deutsch_, Oct 27 2002

%C Transform of A001405 by |A049310(n,k)|, that is, transform of central binomial coefficients C(n,floor(n/2)) by Chebyshev mapping which takes a sequence with g.f. g(x) to the sequence with g.f. (1/(1-x^2))g(x/(1-x^2)). - _Paul Barry_, Jul 30 2005

%C The Kn1p sums, p >= 1, see A180662, of the Schroeder triangle A033877 (offset 0) are all related to A026003, e.g. Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - (2*n+7), Kn14(n) = A026003(n+6) - (2*n^2+18*n+41), Kn15(n) = A026003(n+8) - (4*n^3+66*n^2+368*n+693)/3, etc.. - _Johannes W. Meijer_, Jul 15 2013

%D L. Ericksen, Lattice path combinatorics for multiple product identities, J. Stat. Plan. Infer. 140 (2010) 2213-2226 doi:10.1016/j.jspi.2010.01.017

%D Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

%H Vincenzo Librandi, <a href="/A026003/b026003.txt">Table of n, a(n) for n = 0..200</a>

%H Axel Bacher, <a href="https://arxiv.org/abs/1802.06030">Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths</a>, arXiv:1802.06030 [cs.DS], 2018.

%H Paul Barry, <a href="https://www.emis.de/journals/JIS/VOL22/Barry1/barry411.html">The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths</a>, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.

%H Li-Hua Deng, Eva Y. P. Deng and Louis W. Shapiro,<a href="https://arxiv.org/abs/0906.1844">The Riordan Group and Symmetric Lattice Paths</a>, arXiv:0906.1844v1 [math.CO], 2009.

%F G.f.: (sqrt((x^2-2*x-1)/(x^2+2*x-1))-1)/2/x. - _Vladeta Jovovic_, Apr 27 2003

%F a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(n-2k, floor((n-2k)/2)). - _Paul Barry_, Jul 30 2005

%F From _Paul Barry_, Mar 01 2010: (Start)

%F G.f.: 1/(1-x-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction),

%F G.f.: 1/(1-x-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-... (continued fraction). (End)

%F D-finite with recurrence (n+1)*a(n) -2*a(n-1) +6*(-n+1)*a(n-2) -2*a(n-3) +(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 30 2012

%F a(n) ~ (1+sqrt(2))^(n+1) / (2^(3/4) * sqrt(Pi*n)). - _Vaclav Kotesovec_, Feb 13 2014

%p A026003 :=n -> add(binomial(n-k, k) * binomial(n-2*k, floor((n-2*k)/2)), k=0..floor(n/2)): seq(A026003(n), n=0..30); # _Johannes W. Meijer_, Jul 15 2013

%t CoefficientList[Series[(Sqrt[(x^2-2*x-1)/(x^2+2*x-1)]-1)/2/x, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 13 2014 *)

%Y Bisections are the central Delannoy numbers A001850 and A002002 respectively.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 09:20 EDT 2024. Contains 372540 sequences. (Running on oeis4.)