The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110. 585

%I #168 Nov 30 2023 23:34:02

%S 1,2,4,6,8,12,16,24,30,32,36,48,60,64,72,96,120,128,144,180,192,210,

%T 216,240,256,288,360,384,420,432,480,512,576,720,768,840,864,900,960,

%U 1024,1080,1152,1260,1296,1440,1536,1680,1728,1800,1920,2048,2160,2304,2310

%N Least integer of each prime signature A124832; also products of primorial numbers A002110.

%C All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.

%C A111059 is a subsequence. - _Reinhard Zumkeller_, Jul 05 2010

%C Choie et al. (2007) call these "Hardy-Ramanujan integers". - _Jean-François Alcover_, Aug 14 2014

%C The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".

%C For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - _Antti Karttunen_, Jan 18 2019

%C The prime signature corresponding to a(n) is given in row n of A124832. - _M. F. Hasler_, Jul 17 2019

%H Franklin T. Adams-Watters, <a href="/A025487/b025487.txt">Table of n, a(n) for n = 1..10001</a> (first 291 terms from Will Nicholes)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.

%H Kevin Broughan, <a href="https://doi.org/10.1017/9781108178228">Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents</a>, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".

%H YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, <a href="https://doi.org/10.5802/jtnb.591">On Robin's criterion for the Riemann hypothesis</a>, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.

%H Asaf Cohen Antonir and Asaf Shapira, <a href="https://arxiv.org/abs/2207.09410">An Elementary Proof of a Theorem of Hardy and Ramanujan</a> (2022). arXiv:2207.09410 [math.NT]

%H Michael De Vlieger, <a href="/A025487/a025487.png">Relations of A025487 to A002110, A002182, and A002201</a>.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.

%H G. H. Hardy and S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper34/page1.htm">Asymptotic formulae for the distribution of integers of various types</a>, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.

%H Jeffery Kline, <a href="https://doi.org/10.1016/j.laa.2019.09.022">On the eigenstructure of sparse matrices related to the prime number theorem</a>, Linear Algebra and its Applications (2020) Vol. 584, 409-430.

%H L. B. Richmond, <a href="https://doi.org/10.1016/0022-314X(76)90085-8">Asymptotic results for partitions (I) and the distribution of certain integers</a>, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.

%F What can be said about the asymptotic behavior of this sequence? - _Franklin T. Adams-Watters_, Jan 06 2010

%F Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - _Charles R Greathouse IV_, Dec 05 2012

%F From _Antti Karttunen_, Jan 18 & Dec 24 2019: (Start)

%F A085089(a(n)) = n.

%F A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]

%F A001221(a(n)) = A061395(a(n)) = A061394(n).

%F A007814(a(n)) = A051903(a(n)) = A051282(n).

%F a(A101296(n)) = A046523(n).

%F a(A306802(n)) = A002182(n).

%F a(n) = A108951(A181815(n)) = A329900(A181817(n)).

%F If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).

%F (End)

%F Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - _Amiram Eldar_, Oct 20 2020

%e The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...

%p isA025487 := proc(n)

%p local pset,omega ;

%p pset := sort(convert(numtheory[factorset](n),list)) ;

%p omega := nops(pset) ;

%p if op(-1,pset) <> ithprime(omega) then

%p return false;

%p end if;

%p for i from 1 to omega-1 do

%p if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then

%p return false;

%p end if;

%p end do:

%p true ;

%p end proc:

%p A025487 := proc(n)

%p option remember ;

%p local a;

%p if n = 1 then

%p 1 ;

%p else

%p for a from procname(n-1)+1 do

%p if isA025487(a) then

%p return a;

%p end if;

%p end do:

%p end if;

%p end proc:

%p seq(A025487(n),n=1..100) ; # _R. J. Mathar_, May 25 2017

%t PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* _Robert G. Wilson v_, Aug 14 2004 *)

%t (* Second program: generate all terms m <= A002110(n): *)

%t f[n_] := {{1}}~Join~

%t Block[{lim = Product[Prime@ i, {i, n}],

%t ww = NestList[Append[#, 1] &, {1}, n - 1], dec},

%t dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];

%t Map[Block[{w = #, k = 1},

%t Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],

%t Product[Prime@ i, {i, Length@ w}] ] &@ Reap[

%t Do[

%t If[# < lim,

%t Sow[#]; k = 1,

%t If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,

%t If[k == 1,

%t MapAt[# + 1 &, w, k],

%t PadLeft[#, Length@ w, First@ #] &@

%t Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],

%t {i, Infinity}] ][[-1]]

%t ] &, ww]]; Sort[Join @@ f@ 13] (* _Michael De Vlieger_, May 19 2018 *)

%o (PARI) isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ _Charles R Greathouse IV_, Jun 10 2011

%o (PARI) factfollow(n)={local(fm, np, n2);

%o fm=factor(n); np=matsize(fm)[1];

%o if(np==0,return([2]));

%o n2=n*nextprime(fm[np,1]+1);

%o if(np==1||fm[np,2]<fm[np-1,2], [n*fm[np,1], n2], [n2])}

%o al(n) = {local(r, ms); r=vector(n);

%o ms=[1];

%o for(k=1, n,

%o r[k]=ms[1];

%o ms=vecsort(concat(vector(#ms-1, j, ms[j+1]), factfollow(ms[1]))));

%o r} /* _Franklin T. Adams-Watters_, Dec 01 2011 */

%o (PARI) is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ _David A. Corneth_, Feb 14 2019

%o (PARI) upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ _M. F. Hasler_, Jul 17 2019

%o (PARI)

%o \\ For fast generation of large number of terms, use this program:

%o A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980

%o A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.

%o v025487 = A025487list(101);

%o A025487(n) = v025487[n];

%o for(n=1,#v025487,print1(A025487(n), ", ")); \\ _Antti Karttunen_, Dec 24 2019

%o (Haskell)

%o import Data.Set (singleton, fromList, deleteFindMin, union)

%o a025487 n = a025487_list !! (n-1)

%o a025487_list = 1 : h [b] (singleton b) bs where

%o (_ : b : bs) = a002110_list

%o h cs s xs'@(x:xs)

%o | m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'

%o | otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs

%o where (m, s') = deleteFindMin s

%o -- _Reinhard Zumkeller_, Apr 06 2013

%o (Sage)

%o def sharp_primorial(n): return sloane.A002110(prime_pi(n))

%o N = 2310

%o nmax = 2^floor(log(N,2))

%o sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])

%o # _Giuseppe Coppoletta_, Jan 26 2015

%Y Subsequence of A055932, A191743, and A324583.

%Y Cf. A025488, A051282, A036041, A051466, A061394, A124832, A161360, A166469, A181815, A181817, A283980, A306802, A322584, A322585 (characteristic function), A329897, A329898, A329899, A329900, A329904, A330683.

%Y Cf. A085089, A101296 (left inverses).

%Y Equals range of values taken by A046523.

%Y Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).

%Y Subsequences of this sequence include: A000079, A000142, A000400, A001013, A001813, A002110, A002182, A005179, A006939, A025527, A056836, A061742, A064350, A066120, A087980, A097212, A097213, A111059, A119840, A119845, A126098, A129912, A140999, A166338, A166470, A166472, A166473, A166475, A167448, A168262, A168263, A168264, A179215, A181555, A181804, A181806, A181809, A181818, A181822, A181823, A181824, A181825, A181826, A181827, A182763, A182862, A182863, A212170, A220264, A220423, A250269, A250270, A260633, A266047, A284456, A300357, A304938, A329894, A330687; also A037019 and A330681 (when sorted), possibly also A289132.

%Y Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.

%Y Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

%K nonn,easy,nice,core

%O 1,2

%A _David W. Wilson_

%E Offset corrected by _Matthew Vandermast_, Oct 19 2008

%E Minor correction by _Charles R Greathouse IV_, Sep 03 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 18:30 EDT 2024. Contains 373107 sequences. (Running on oeis4.)