The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025242 Generalized Catalan numbers. 7

%I #70 Feb 01 2024 12:10:23

%S 2,1,1,2,5,13,35,97,275,794,2327,6905,20705,62642,190987,586219,

%T 1810011,5617914,17518463,54857506,172431935,543861219,1720737981,

%U 5459867166,17369553427,55391735455,177040109419,567019562429,1819536774089

%N Generalized Catalan numbers.

%C Number of Dyck paths of semilength n-1 with no UUDD (n>1). Example: a(4)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003

%C a(n) is the number of Dyck (n-2)-paths with no DDUU (n>2). Example: a(6)=13 counts all 14 Dyck 4-paths except UUDDUUDD which contains a DDUU. There is a simple bijective proof: given a Dyck path that avoids DDUU, for every occurrence of UUDD except the first, the ascent containing this UU must be immediately preceded by a UD (else a DDUU would be present). Transfer the latter UD to the middle of the DD in the UUDD. Then insert a new UD in the middle of the first DD if any; if not, the path is a sawtooth UDUD...UD, in which case insert a UD at the end. This is a bijection from DDUU-avoiding Dyck n-paths to UUDD-avoiding Dyck (n+1)-paths. - _David Callan_, Sep 25 2006

%C For n>1, a(n) is the number of cyclic permutations of [n-1] that avoid the vincular pattern 13-4-2, i.e., the pattern 1342 where the 1 and 3 must be adjacent. By the trivial Wilf equivalence, the same applies for 24-3-1, 31-2-4, and 42-1-3. - _Rupert Li_, Jul 27 2021

%H Vincenzo Librandi, <a href="/A025242/b025242.txt">Table of n, a(n) for n = 1..1000</a>

%H Petr Gregor, Torsten Mütze, and Namrata, <a href="https://arxiv.org/abs/2306.08420">Combinatorial generation via permutation languages. VI. Binary trees</a>, arXiv:2306.08420 [cs.DM], 2023.

%H Petr Gregor, Torsten Mütze, and Namrata, <a href="https://doi.org/10.4230/LIPIcs.ISAAC.2023.33">Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections</a>, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See p. 33.13.

%H Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, <a href="http://dx.doi.org/10.1016/j.disc.2007.04.007">2-Binary trees: bijections and related issues</a>, Discr. Math., 308 (2008), 1209-1221.

%H Jia Huang and Erkko Lehtonen, <a href="https://arxiv.org/abs/2401.15786">Associative-commutative spectra for some varieties of groupoids</a>, arXiv:2401.15786 [math.CO], 2024. See p. 18.

%H Vít Jelínek, Toufik Mansour and Mark Shattuck, <a href="http://dx.doi.org/10.1016/j.aam.2012.09.002">On multiple pattern avoiding set partitions</a>, Adv. Appl. Math. 50 (2) (2013) 292-326, Theorem 4.1, without the leading 2.

%H Yvan Le Borgne, <a href="http://www.emis.de/journals/SLC/wpapers/s54leborgne.html">Counting Upper Interactions in Dyck Paths</a>, Séminaire Lotharingien de Combinatoire, Vol. 54, B54f (2006), 16 pp.

%H Rupert Li, <a href="https://arxiv.org/abs/2107.12353">Vincular Pattern Avoidance on Cyclic Permutations</a>, arXiv:2107.12353 [math.CO], 2021.

%H Toufik Mansour, <a href="https://arxiv.org/abs/math/0110039">Restricted 1-3-2 permutations and generalized patterns</a>, arXiv:math/0110039 [math.CO], 2001.

%H Toufik Mansour, <a href="http://dx.doi.org/10.1007/s00026-002-8031-2">Restricted 1-3-2 permutations and generalized patterns</a>, Annals of Combin., 6 (2002), 65-76. (Example 2.10.)

%H Toufik Mansour and Mark Shattuck, <a href="http://puma.dimai.unifi.it/22_2/mansour_shattuck.pdf">Restricted partitions and generalized Catalan numbers</a>, PU. M. A., Vol. (2011), No. 2, pp. 239-251. - From _N. J. A. Sloane_, Oct 13 2012

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/slides/ascseq.pdf">Pattern-avoiding ascent sequences</a>, Slides from a talk, 2015.

%H Lara Pudwell and Andrew Baxter, <a href="http://faculty.valpo.edu/lpudwell/slides/pp2014_pudwell.pdf">Ascent sequences avoiding pairs of patterns</a>, Slides, Permutation Patterns 2014, East Tennessee State University Jul 07 2014.

%H A. Sapounakis, I. Tasoulas and P. Tsikouras, <a href="http://dx.doi.org/10.1016/j.disc.2007.03.005">Counting strings in Dyck paths</a>, Discrete Math., 307 (2007), 2909-2924.

%F a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-3)*a(3) for n >= 4.

%F G.f.: (1+2*x+x^2-sqrt(1-4*x+2*x^2+x^4))/2. - _Michael Somos_, Jun 08 2000

%F Conjecture: n*(n+1)*a(n) +(n^2+n+2)*a(n-1) +2*(-9*n^2+15*n+17)*a(n-2) +2*(5*n+4)*(n-4)*a(n-3) +(n+1)*(n-6)*a(n-4) +(5*n+4)*(n-7)*a(n-5)=0. - _R. J. Mathar_, Jan 12 2013

%F G.f.: 2 + x - x*G(0), where G(k) = 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - _Sergei N. Gladkovskii_, Jul 12 2013

%t a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-1-k ], {k, 2, n-1} ];

%o (PARI) a(n)=polcoeff((1+2*x+x^2-sqrt(1-4*x+2*x^2+x^4+x*O(x^n)))/2,n)

%Y Cf. A000108, A001006, A006318, A004148, A007477, A082582, A086581.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, _Olivier Gérard_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 03:20 EDT 2024. Contains 372666 sequences. (Running on oeis4.)