The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025065 Number of palindromic partitions of n. 125

%I #72 Nov 16 2021 04:16:35

%S 1,1,2,2,4,4,7,7,12,12,19,19,30,30,45,45,67,67,97,97,139,139,195,195,

%T 272,272,373,373,508,508,684,684,915,915,1212,1212,1597,1597,2087,

%U 2087,2714,2714,3506,3506,4508,4508,5763,5763,7338,7338,9296,9296,11732,11732,14742,14742,18460,18460,23025,23025,28629,28629

%N Number of palindromic partitions of n.

%C That is, the number of partitions of n into parts which can be listed in palindromic order.

%C Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - _T. D. Noe_, Aug 05 2005

%C Also, partial sums of A035363.

%C Also number of partitions of n with at most one part occurring an odd number of times. - _Reinhard Zumkeller_, Dec 18 2013

%C The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - _Clark Kimberling_, Jan 20 2014

%C a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - _Clark Kimberling_, Apr 20 2014.

%C From _Gus Wiseman_, Nov 28 2018: (Start)

%C Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are:

%C (41111): {{1,2},{1,3},{1,4},{1,5}}

%C (32111): {{1,2},{1,3},{1,4},{2,5}}

%C (22211): {{1,2},{1,3},{2,4},{3,5}}

%C (311111): {{1,2},{1,3},{1,4,5,6}}

%C (221111): {{1,2},{1,3},{2,4,5,6}}

%C (2111111): {{1,2},{1,3,4,5,6,7}}

%C (11111111): {{1,2,3,4,5,6,7,8}}

%C (End)

%C Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - _Clark Kimberling_, May 24 2019

%C From _Gus Wiseman_, May 21 2021: (Start)

%C The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

%C Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are:

%C (1) (2) (3) (4) (5) (6) (7) (8)

%C (11) (21) (22) (32) (33) (43) (44)

%C (31) (41) (42) (52) (53)

%C (211) (311) (51) (61) (62)

%C (321) (421) (71)

%C (411) (511) (422)

%C (3111) (4111) (431)

%C (521)

%C (611)

%C (4211)

%C (5111)

%C (41111)

%C Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are:

%C (1) (2) (21) (22) (221) (222) (2221) (2222)

%C (11) (111) (31) (311) (321) (3211) (3221)

%C (211) (2111) (411) (4111) (3311)

%C (1111) (11111) (2211) (22111) (4211)

%C (3111) (31111) (5111)

%C (21111) (211111) (22211)

%C (111111) (1111111) (32111)

%C (41111)

%C (221111)

%C (311111)

%C (2111111)

%C (11111111)

%C (End)

%H David A. Corneth, <a href="/A025065/b025065.txt">Table of n, a(n) for n = 0..10000</a> (first 101 terms from Reinhard Zumkeller that were corrected by _Georg Fischer_, Jan 20 2019)

%F a(n) = A000070(A004526(n)). - _Reinhard Zumkeller_, Jan 23 2010

%F G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [_Joerg Arndt_, Mar 11 2014]

%F a(2*k+2) = a(2*k) + A000041(k + 1). - _David A. Corneth_, May 29 2021

%F a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - _Vaclav Kotesovec_, Nov 16 2021

%e The partitions for the first few values of n are as follows:

%e n: partitions .......................... number

%e 1: 1 ................................... 1

%e 2: 2 11 ................................ 2

%e 3: 3 111 ............................... 2

%e 4: 4 22 121 1111 ....................... 4

%e 5: 5 131 212 11111 ..................... 4

%e 6: 6 141 33 222 1221 11211 111111 ...... 7

%e 7: 7 151 313 11311 232 21112 1111111 ... 7

%e From _Reinhard Zumkeller_, Jan 23 2010: (Start)

%e Partitions into 1,2,4,6,... for the first values of n:

%e 1: 1 ....................................... 1

%e 2: 2 11 .................................... 2

%e 3: 21 111 .................................. 2

%e 4: 4 22 211 1111 ........................... 4

%e 5: 41 221 2111 11111 ....................... 4

%e 6: 6 42 4211 222 2211 21111 111111.......... 7

%e 7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)

%t Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* _Peter J. C. Moses_, Jan 20 2014 *)

%t n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* _Peter J. C. Moses_, Jan 20 2014 *)

%t CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* _Clark Kimberling_, Mar 14 2014 *)

%o (Haskell)

%o a025065 = p (1:[2,4..]) where

%o p [] _ = 0

%o p _ 0 = 1

%o p ks'@(k:ks) m | m < k = 0

%o | otherwise = p ks' (m - k) + p ks m

%o -- _Reinhard Zumkeller_, Aug 12 2011

%o (Haskell)

%o import Data.List (group)

%o a025065 = length . filter (<= 1) .

%o map (sum . map ((`mod` 2) . length) . group) . ps 1

%o where ps x 0 = [[]]

%o ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]

%o -- _Reinhard Zumkeller_, Dec 18 2013

%o (PARI) N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ _Joerg Arndt_, Mar 11 2014

%Y Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010

%Y Cf. A004526, A030019, A056503, A147878, A320921, A322136.

%Y The bisections are both A000070.

%Y The ordered version (palindromic compositions) is A016116.

%Y The complement is counted by A233771 and A210249.

%Y The case of palindromic prime signature is A242414.

%Y Palindromic partitions are ranked by A265640, with complement A229153.

%Y The case of palindromic plane trees is A319436.

%Y The multiplicative version (palindromic factorizations) is A344417.

%Y A000569 counts graphical partitions.

%Y A027187 counts partitions of even length, ranked by A028260.

%Y A035363 counts partitions into even parts, ranked by A066207.

%Y A058696 counts partitions of even numbers, ranked by A300061.

%Y A110618 counts partitions with length <= half sum, ranked by A344291.

%Y Cf. A000041, A067538, A143773, A209816, A338914, A338915, A340387, A344296, A344414, A344415, A344416.

%K nonn

%O 0,3

%A _Clark Kimberling_

%E Edited by _N. J. A. Sloane_, Dec 29 2007

%E Prepended a(0)=1, added more terms, _Joerg Arndt_, Mar 11 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 19:35 EDT 2024. Contains 373102 sequences. (Running on oeis4.)