The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A019670 Decimal expansion of Pi/3. 42

%I #120 Mar 21 2024 08:34:56

%S 1,0,4,7,1,9,7,5,5,1,1,9,6,5,9,7,7,4,6,1,5,4,2,1,4,4,6,1,0,9,3,1,6,7,

%T 6,2,8,0,6,5,7,2,3,1,3,3,1,2,5,0,3,5,2,7,3,6,5,8,3,1,4,8,6,4,1,0,2,6,

%U 0,5,4,6,8,7,6,2,0,6,9,6,6,6,2,0,9,3,4,4,9,4,1,7,8,0,7,0,5,6,8

%N Decimal expansion of Pi/3.

%C With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area <S_0> of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - _Jonathan Vos Post_, Jan 23 2011

%C Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - _Stanislav Sykora_, Jun 07 2014

%C 60 degrees in radians. - _M. F. Hasler_, Jul 08 2016

%C Volume of a quarter sphere of radius 1. - _Omar E. Pol_, Aug 17 2019

%C Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - _Jianing Song_, Nov 09 2019

%C The area of a circle circumscribing a unit-area regular dodecagon. - _Amiram Eldar_, Nov 05 2020

%H Ivan Panchenko, <a href="/A019670/b019670.txt">Table of n, a(n) for n = 1..1000</a>

%H Kunle Adegoke, <a href="http://arxiv.org/abs/1603.08097">Infinite arctangent sums involving Fibonacci and Lucas numbers</a>, arXiv:1603.08097 [math.NT], 2016.

%H J. M. Borwein, P. B. Borwein, and K. Dilcher, <a href="http://www.jstor.org/stable/2324715">Pi, Euler numbers and asymptotic expansions</a>, Amer. Math. Monthly, 96 (1989), 681-687.

%H Jean Desbois and Stéphane Ouvry, <a href="http://arxiv.org/abs/1101.4135">Algebraic and arithmetic area for m planar Brownian paths</a>, arXiv:1101.4135 [math-ph], Jan 21, 2011.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F A third of A000796, a sixth of A019692, the square root of A100044.

%F Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - _Charles R Greathouse IV_, Sep 08 2011

%F Product_{k >= 1}(1-(6k)^(-2))^(-1). - _Fred Daniel Kline_, May 30 2013

%F From _Peter Bala_, Feb 05 2015: (Start)

%F Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)

%F The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)

%F Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - _Michel Marcus_, Mar 29 2016

%F Equals Product_{n >= 1} A016910(n) / A136017(n). - _Fred Daniel Kline_, Jun 09 2016

%F Equals Integral_{x=-oo..oo} sech(x)/3 dx. - _Ilya Gutkovskiy_, Jun 09 2016

%F From _Peter Bala_, Nov 16 2016: (Start)

%F Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).

%F The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)

%F Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - _Dimitris Valianatos_, May 13 2017

%F Equals A019699/4 or A019693/2. - _Omar E. Pol_, Aug 17 2019

%F Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - _Peter Bala_, Nov 05 2019

%F Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - _Bernard Schott_, Mar 12 2022

%F Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - _Peter Bala_, Mar 16 2024

%e Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...

%e From _Peter Bala_, Nov 16 2016: (Start)

%e Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).

%e Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)

%t RealDigits[N[Pi/3,6! ]] (* _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009 *)

%o (PARI) Pi/3 \\ _Charles R Greathouse IV_, Sep 08 2011

%o (PARI) N=150; default(realprecision, 3+N); digits(Pi*10^N\3) \\ _M. F. Hasler_, Jul 08 2016

%Y Cf. A000796 (Pi), A019669 (Pi/2), A019692 (2*Pi), A122952 (3*Pi), A003881(Pi/4), A137914, A238238, A002388, A091925, A093954, A016910, A019694, A136017, A352324.

%Y Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

%K nonn,cons

%O 1,3

%A _N. J. A. Sloane_, Dec 11 1996

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)