The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018224 a(n) = binomial(n, floor(n/2))^2 = A001405(n)^2. 7
1, 1, 4, 9, 36, 100, 400, 1225, 4900, 15876, 63504, 213444, 853776, 2944656, 11778624, 41409225, 165636900, 590976100, 2363904400, 8533694884, 34134779536, 124408576656, 497634306624, 1828114918084 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is also the number of rooted two-vertex (or, dually, two-face) regular planar maps of valency n+1. - Valery A. Liskovets, Oct 19 2005
If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic), then a(n)=(-1)^n*E[(tr(A^4))^n]. - Andrew V. Sutherland, Apr 01 2008
LINKS
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Synthesis, Séminaire de Combinatoire Ph. Flajolet, June 06 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, Eur. J. Comb. 61, 242-275 (2017)
M. Bousquet, G. Labelle and P. Leroux, Enumeration of planar two-face maps, Discrete Math., vol. 222 (2000), 1-25.
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Helmut Prodinger, Two New Identities Involving the Catalan Numbers: A classical approach, arXiv:1911.07604 [math.CO], 2019.
FORMULA
E.g.f.: BesselI(0, 2*x)*(BesselI(0, 2*x)+BesselI(1, 2*x)). - Vladeta Jovovic, Jun 12 2005
G.f. (1+1/(4*x))*hypergeom([1/2, 1/2],[1],16*x^2)-1/(4*x). - Mark van Hoeij, Oct 13 2009
a(n) = (n!/(floor(n/2)!*floor((n+1)/2)!))^2. - Peter Luschny, Apr 29 2014
a(n) = A056040(n) * A056040(n+1) / (n+1). - Peter Luschny, Apr 29 2014
a(n) = 4^n*[x^n]((1+x)*EllipticK(x)/(x*Pi/2)-1/x). - Peter Luschny, Oct 14 2015
a(n) ~ 4^n*((2*n+3)/(2*n+1))^((-1)^n/2)/((n+1)*Pi/2). - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*C(k)*binomial(2*n-2*k,n-k) where C(k) are Catalan numbers (A000108), see Prodinger. - Michel Marcus, Nov 19 2019
From Peter Bala, Jul 03 2023: (Start)
Right hand side of the binomial sum identity (1/2)*Sum_{k = 0..n+1} (-1)^k*4^(n+1-k)*binomial(n+1,k)*binomial(n+k,k)*binomial(2*k,k) = a(n).
a(n) = (1/2)*4^(n+1) * hypergeom([n+1, -n-1, 1/2], [1, 1], 1).
P-recursive:
(2*n - 1)*(n + 1)^2*a(n) = 4*(2*n^2 - 1)*a(n-1) + 16*(2*n + 1)*(n - 1)^2*a(n-2) with a(0) = a(1) = 1. (End)
MAPLE
s := x -> (1+x)*EllipticK(x)/(x*Pi/2)-1/x:
seq(4^n*coeff(series(s(x), x, n+2), x, n), n=0..23); # Peter Luschny, Oct 14 2015
MATHEMATICA
(* Note that Mathematica uses a different definition of the EllipticK function. *)
CoefficientList[Series[(-Pi + (2 + 8 x) EllipticK[16 x^2])/(4 Pi x), {x, 0, 23}], x] (* Peter Luschny, Oct 14 2015 *)
Table[Binomial[n, Floor[n/2]]^2, {n, 0, 30}] (* Harvey P. Dale, Dec 02 2022 *)
PROG
(PARI) vector(50, n, n--; binomial(n, n\2)^2) \\ Altug Alkan, Oct 14 2015
CROSSREFS
Bisections are A002894 and A060150.
Sequence in context: A239213 A346537 A339999 * A149137 A149138 A149139
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)