The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014531 Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center. 14

%I #66 Mar 01 2024 10:30:20

%S 1,3,10,30,90,266,784,2304,6765,19855,58278,171106,502593,1477035,

%T 4343160,12778152,37616427,110797569,326527350,962803170,2840372304,

%U 8383467708,24755608584,73133433800,216143407675,639062383401

%N Form array in which n-th row is obtained by expanding (1+x+x^2)^n and taking the 2nd column from the center.

%C Number of "up" steps in all Motzkin paths of length n+1. E.g. a(2)=3 because in the four Motzkin paths of length 3, HHH, HUD, UDH and UHD, where H=(1,0), U=(1,1), D=(1,-1), we have altogether three U steps. - _Emeric Deutsch_, Dec 26 2003

%C a(n-1) = A111808(n,n-2) for n>1. - _Reinhard Zumkeller_, Aug 17 2005

%C a(n) = number of paths in the half-plane x>=0, from (0,0) to (n+1,2), and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). For example, for n=2, we have the 3 paths: UUH, HUU, UHU. - _José Luis Ramírez Ramírez_, Apr 19 2015

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

%H G. C. Greubel, <a href="/A014531/b014531.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..200 from T. D. Noe)

%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See pp. 21-22.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrinomialCoefficient.html">Trinomial Coefficient.</a>

%F a(n) = A002426(n+1)-A001006(n+1) = a(n-1)+A005717(n)+A014532(n-2) - _Henry Bottomley_, May 15 2001

%F E.g.f.: exp(x)*(2*x*BesselI(1, 2*x)+(x-2)*BesselI(2, 2*x))/x. - _Vladeta Jovovic_, Aug 21 2003

%F G.f.: [1-2z-z^2-(1-z)q]/(2z^3q), where q=sqrt(1-2z-3z^2). - _Emeric Deutsch_, Dec 26 2003

%F a(n) = sum{k=0..n+1, C(n+1,k)*C(n-k+1,k+2)} - _Paul Barry_, Sep 20 2004

%F D-finite with recurrence (n+3)*(n-1)*a(n) -(n+1)*(2n+1)*a(n-2)-3*n*(n+1)*a(n-2)=0. - _R. J. Mathar_, Dec 08 2011

%F a(n) = n*(n+1)*hypergeom([(1-n)/2, 1-n/2], [3], 4)/2. - _Peter Luschny_, Nov 23 2014

%F G.f.: z*M(z)^2/(1-z-2*z^2*M(z)), where M(z) is the g.f. of Motzkin paths. - _José Luis Ramírez Ramírez_, Apr 19 2015

%F a(n) = GegenbauerC(n-1, -n-1, -1/2). - _Peter Luschny_, May 09 2016

%F a(n) = Sum_{k>0} k * A055151(n+1,k). - _Alois P. Heinz_, Mar 29 2020

%p seq( add(binomial(i+1,k)*binomial(i-k+1,k+2), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001

%p a := n -> simplify(GegenbauerC(n-1, -n-1, -1/2)):

%p seq(a(n), n=1..26); # _Peter Luschny_, May 09 2016

%t Table[Sum[Binomial[i + 1, k]*Binomial[i - k + 1, k + 2], {k, 0, Floor[i/2]}], {i, 30}] (* _Michael De Vlieger_, Apr 20 2015 *)

%t Table[GegenbauerC[n - 1, -n - 1, -1/2], {n,1,50}] (* _G. C. Greubel_, Feb 28 2017 *)

%o (Sage)

%o a = lambda n: n*(n+1)*hypergeometric([(1-n)/2, 1-n/2], [3], 4)/2

%o [simplify(a(n)) for n in (1..26)] # _Peter Luschny_, Nov 23 2014

%o (PARI) for(n=1,25, print1(sum(k=0,n+1, binomial(n+1,k)*binomial(n-k+1,k+2)), ", ")) \\ _G. C. Greubel_, Feb 28 2017

%Y Cf. A027907, A005717, A055151.

%Y First differences are in A025180.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Feb 05 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 01:38 EDT 2024. Contains 372768 sequences. (Running on oeis4.)