login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007852 Antichains in rooted plane trees on n nodes. 6
1, 2, 7, 29, 131, 625, 3099, 15818, 82595, 439259, 2371632, 12967707, 71669167, 399751019, 2247488837, 12723799989, 72474333715, 415046380767, 2388355096446, 13803034008095, 80082677184820, 466263828731640, 2723428895205210, 15954063529603565, 93711351580424391 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Setting both offsets to zero, this is the Catalan transform of A007317. - R. J. Mathar, Jun 29 2009
a(n) is also the cumulated sizes of admissible cuts of general rooted trees of size n. - Antoine Genitrini, Mar 14 2013
LINKS
O. Bodini, A. Genitrini and F. Peschanski, Enumeration and Random Generation of Concurrent Computations In proc. 23rd International Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA'12), Discrete Mathematics and Theoretical Computer Science, pp 83-96, 2012.
O. Bodini, A. Genitrini and F. Peschanski, A Quantitative Study of Pure Parallel Processes, Preprint, 2013.
O. Bodini, A. Genitrini, F. Peschanski, A Quantitative Study of Pure Parallel Processes, arXiv preprint arXiv:1407.1873 [cs.PL], 2014.
G.-S. Cheon, H. Kim, L. W. Shapiro, Mutation effects in ordered trees, arXiv preprint arXiv:1410.1249 [math.CO], 2014.
M. Klazar, Twelve countings with rooted plane trees, European Journal of Combinatorics 18 (1997), 195-210; Addendum, 18 (1997), 739-740.
F. Ruskey, Listing and Counting Subtrees of a Tree, SIAM J. Computing, 10 (1981) 141-150.
FORMULA
G.f.: A(z) = (1-B(z)-sqrt(1-5*z-B(z)))/2, where B(z) = (1-sqrt(1-4*z))/2.
a(1) = 1 and for n > 1 a(n) = sum( (a(j)+b(j))*a(n-j), j=1..n-1 ), where b(n) = C(2n-2, n-1)/n (Catalan number).
Also REVERT[A(x)] = x + 2*x^2 + x^3*(A007440(x) (Reversion of Fibonacci). - Olivier Gérard, Jul 05 2001
a(n+1) = Sum_{k, 0<=k<=n} A039599(n,k) * A000108(k). - Philippe Deléham, Mar 12 2007
P-recurrence: (-500*n+2000*n^3)*a(n)+(120-220*n-1380*n^2-920*n^3)*a(n+1)+(-1488-1626*n-387*n^2+21*n^3)*a(n+2)+(1088*n+1104+351*n^2+37*n^3)*a(n+3)+(-42*n^2-146*n-168-4*n^3)*a(n+4); a(0)=0; a(1)=1; a(2)=2; a(3)=7. - Antoine Genitrini, Mar 14 2013
a(n) ~ (25/4)^n / (sqrt(15*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2014
a(n) = sum(i=0..n, binomial(2*i+1,i)*binomial(2*n-1,n-i-1))/((2*n-1)). - Vladimir Kruchinin, Jun 09 2014
1 + 1/z*A(z)^2 = 1 + z + 4*z^2 + 18*z^3 + 86*z^4 + ... is the o.g.f. for A153294. - Peter Bala, Jul 21 2015
MATHEMATICA
Rest[CoefficientList[Series[(1-(1-Sqrt[1-4*x])/2-Sqrt[1-5*x-(1-Sqrt[1-4*x])/2])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 08 2014 *)
PROG
(Python)
def a(n):
l = [0, 1, 2, 7]
if n < 4:
return l[n]
for i in range(n-3):
l[i%4] = ( (-500*i+2000*i**3)*l[i%4]+(120-220*i-1380*i**2-920*i**3)*l[(i+1)%4]+(-1488-1626*i-387*i**2+21*i**3)*l[(i+2)%4]+(1088*i+1104+351*i**2+37*i**3)*l[(i+3)%4] ) / (+42*i**2+146*i+168+4*i**3)
return l[i%4]
# Antoine Genitrini, Mar 14 2013
(PARI)
N = 33; x = 'x + O('x^N);
B = (1-sqrt(1-4*x))/2;
gf = (1-B-sqrt(1-5*x-B))/2;
v = Vec(gf)
\\ Joerg Arndt, Mar 14 2013
(Maxima)
a(n):=sum(binomial(2*i+1, i)*binomial(2*n-1, n-i-1), i, 0, n)/((2*n-1)); /* Vladimir Kruchinin, Jun 09 2014 */
CROSSREFS
Sequence in context: A200755 A132262 A371431 * A300048 A232971 A366084
KEYWORD
nonn
AUTHOR
Martin Klazar, Mar 15 1996
EXTENSIONS
More terms and formulas from Frank Ruskey, Nov 15 1997
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 01:40 EDT 2024. Contains 371696 sequences. (Running on oeis4.)