The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007805 a(n) = Fibonacci(6*n + 3)/2. 37

%I #116 Feb 25 2023 03:07:51

%S 1,17,305,5473,98209,1762289,31622993,567451585,10182505537,

%T 182717648081,3278735159921,58834515230497,1055742538989025,

%U 18944531186571953,339945818819306129,6100080207560938369

%N a(n) = Fibonacci(6*n + 3)/2.

%C Hypotenuse (z) of Pythagorean triples (x,y,z) with |2x-y|=1.

%C x(n) := 2*A049629(n) and y(n) := a(n), n >= 0, give all positive solutions of the Pell equation x^2 - 5*y^2 = -1. See the Gregory V. Richardson formula, where his x is the y here and A075796(n+1) = x(n). - _Wolfdieter Lang_, Jun 20 2013

%C Positive numbers n such that 5*n^2 - 1 is a square (A075796(n+1)^2). - _Gregory V. Richardson_, Oct 13 2002

%H G. C. Greubel, <a href="/A007805/b007805.txt">Table of n, a(n) for n = 0..795</a> (terms 0..100 from T. D. Noe)

%H A. J. C. Cunningham, <a href="https://archive.org/details/binomialfactoris01cunn/page/n46/mode/1up">Binomial Factorisations</a>, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16.

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html ">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-1).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F G.f.: (1-x)/(1-18*x+x^2).

%F a(n) = 18*a(n-1) - a(n-2), n > 1, a(0)=1, a(1)=17.

%F a(n) = A134495(n)/2 = A001076(2n+1).

%F a(n+1) = 9*a(n) + 4*sqrt(5*a(n)^2-1). - _Richard Choulet_, Aug 30 2007, Dec 28 2007

%F a(n) = ((2+sqrt(5))^(2*n+1) - (2-sqrt(5))^(2*n+1))/(2*sqrt(5)). - _Dean Hickerson_, Dec 09 2002

%F a(n) ~ (1/10)*sqrt(5)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002

%F Limit_{n->infinity} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - _Gregory V. Richardson_, Oct 13 2002

%F Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = q(n, 16). - _Benoit Cloitre_, Dec 06 2002

%F a(n) = 19*a(n-1)- 19*a(n-2) + a(n-3); f(x) = (sqrt(5)/10)*((2+sqrt(5))*(9+4*sqrt(5))^(x-1) - (2-sqrt(5))*(9-4*sqrt(5))^(x-1)). - _Antonio Alberto Olivares_, May 15 2008

%F a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). - _Antonio Alberto Olivares_, Jun 19 2008

%F a(n) = b(n+1) - b(n), n >= 0, with b(n) := F(6*n)/F(6) = A049660(n). First differences. See the o.g.f.s. - _Wolfdieter Lang_, 2012

%F a(n) = S(n,18) - S(n-1,18) with the Chebyshev S-polynomials (A049310). - _Wolfdieter Lang_, Jun 20 2013

%F Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/4^2. Compare with A001519 and A097843. - _Peter Bala_, Nov 29 2013

%F a(n) = 9*a(n-1) + 8*A049629(n-1), n >= 1, a(0) = 1. This is just the rewritten Chebyshev S(n, 18) recurrence. - _Wolfdieter Lang_, Aug 26 2014

%F From _Peter Bala_, Mar 23 2015: (Start)

%F a(n) = ( Fibonacci(6*n + 6 - 2*k) - Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.

%F a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) + Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.

%F The aerated sequence (b(n)) n>=1 = [1, 0, 17, 0, 305, 0, 5473, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -20, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

%F a(n) = sqrt(2 + (9-4*sqrt(5))^(1+2*n) + (9+4*sqrt(5))^(1+2*n))/(2*sqrt(5)). - _Gerry Martens_, Jun 04 2015

%p seq(combinat:-fibonacci(6*n+3)/2, n=0..30); # _Robert Israel_, Sep 10 2014

%t LinearRecurrence[{18, -1}, {1, 17}, 50] (* _Sture Sjöstedt_, Nov 29 2011 *)

%t Table[Fibonacci[6n+3]/2, {n, 0, 20}] (* _Harvey P. Dale_, Dec 17 2011 *)

%t CoefficientList[Series[(1-x)/(1-18*x+x^2), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 19 2017 *)

%o (Haskell)

%o a007805 = (`div` 2) . a000045 . (* 3) . (+ 1) . (* 2)

%o -- _Reinhard Zumkeller_, Mar 26 2013

%o (PARI) a(n)=fibonacci(6*n+3)/2 \\ _Edward Jiang_, Sep 09 2014

%o (PARI) x='x+O('x^30); Vec((1-x)/(1-18*x+x^2)) \\ _G. C. Greubel_, Dec 19 2017

%o (Magma) I:=[1, 17]; [n le 2 select I[n] else 18*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 19 2017

%Y Cf. A000045.

%Y Row 18 of array A094954.

%Y Row 2 of array A188647.

%Y Cf. similar sequences listed in A238379.

%K nonn,nice,easy

%O 0,2

%A _James A. Raymond_, _Clark Kimberling_

%E Better description and more terms from _Michael Somos_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 03:53 EDT 2024. Contains 373227 sequences. (Running on oeis4.)