The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007696 Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).
(Formerly M4001)
81

%I M4001 #134 Mar 08 2024 11:55:11

%S 1,1,5,45,585,9945,208845,5221125,151412625,4996616625,184874815125,

%T 7579867420125,341094033905625,16713607661375625,885821206052908125,

%U 50491808745015763125,3080000333445961550625,200200021673987500790625,13813801495505137554553125

%N Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).

%C a(n), n >= 1, enumerates increasing quintic (5-ary) trees. See David Callan's comment on A007559 (number of increasing quarterny trees).

%C Hankel transform is A169619. - _Paul Barry_, Dec 03 2009

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A007696/b007696.txt">Table of n, a(n) for n = 0..100</a>

%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seq. 3 (2000), Article 00.2.4.

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions</a>, arXiv:1403.5962 [math.CO], 2014.

%H Maxie D. Schmidt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html">Generalized j-Factorial Functions, Polynomials, and Applications </a>, J. Integer Seq. 13 (2010), Article 10.6.7; see page 39.

%H Michael Z. Spivey and Laura L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, J. Integer Seq. 9 (2006), Article 06.1.1.

%F E.g.f.: (1 - 4*x)^(-1/4).

%F a(n) ~ 2^(5/2) * Pi^(1/2) * Gamma(1/4)^(-1) * n^(3/4) * 2^(2*n) * e^(-n) * n^n * (1 + 23/96 * n^(-1) - ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001

%F a(n) = Sum_{k = 0..n} (-4)^(n-k) * A048994(n, k). - _Philippe Deléham_, Oct 29 2005

%F G.f.: 1/(1 - x/(1 - 4*x/(1 - 5*x/(1 - 8*x/(1 - 9*x/(1 - 12*x/(1 - 13*x/(1 - .../(1 - A042948(n+1)*x/(1 -... (continued fraction). - _Paul Barry_, Dec 03 2009

%F a(n) = (-3)^n * Sum_{k = 0..n} (4/3)^k * s(n+1, n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012

%F G.f.: 1/T(0), where T(k) = 1 - x * (4*k + 1)/(1 - x * (4*k + 4)/T(k+1)) (continued fraction). - _Sergei N. Gladkovskii_, Mar 19 2013

%F G.f.: 1 + x/Q(0), where Q(k) = 1 + x + 2*(2*k - 1)*x - 4*x*(k+1)/Q(k+1) (continued fraction). - _Sergei N. Gladkovskii_, May 03 2013

%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x * (4*k + 1)/(x * (4*k + 1) + 1/G(k+1))) (continued fraction). - _Sergei N. Gladkovskii_, Jun 04 2013

%F 0 = a(n) * (4*a(n+1) - a(n+2)) + a(n+1) * a(n+1) for all n in Z. - _Michael Somos_, Jan 17 2014

%F a(-n) = (-1)^n / A008545(n). - _Michael Somos_, Jan 17 2014

%F Let T(x) = 1/(1 - 3*x)^(1/3) be the e.g.f. for the sequence of triple factorial numbers A007559. Then the e.g.f. A(x) for the quartic factorial numbers satisfies T(int_{0..x} A(t) dt) = A(x). (Cf. A007559 and A008548.) - _Peter Bala_, Jan 02 2015

%F O.g.f.: hypergeom([1, 1/4], [], 4*x). - _Peter Luschny_, Oct 08 2015

%F a(n) = A264781(4*n+1, n). - _Alois P. Heinz_, Nov 24 2015

%F a(n) = 4^n * Gamma(n + 1/4)/Gamma(1/4). - _Artur Jasinski_, Aug 23 2016

%F D-finite with recurrence: a(n) +(-4*n+3)*a(n-1)=0, n>=1. - _R. J. Mathar_, Feb 14 2020

%F Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(1/4) - Gamma(1/4, 1/4))/(2*sqrt(2)). - _Amiram Eldar_, Dec 18 2022

%e G.f. = 1 + x + 5*x^2 + 45*x^3 + 585*x^4 + 9945*x^5 + 208845*x^6 + ...

%p x:='x'; G(x):=(1-4*x)^(-1/4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: seq(eval(f[n],x=0),n=0..17);# _Zerinvary Lajos_, Apr 03 2009

%p A007696 := n -> mul(k, k = select(k-> k mod 4 = 1, [$ 1 .. 4*n])): seq(A007696(n), n=0..17); # _Peter Luschny_, Jun 23 2011

%t a[ n_]:= Pochhammer[ 1/4, n] 4^n; (* _Michael Somos_, Jan 17 2014 *)

%t a[ n_]:= If[n < 0, 1 / Product[ -k, {k, 3, -4n-1, 4}], Product[ k, {k, 1, 4n-3, 4}]]; (* _Michael Somos_, Jan 17 2014 *)

%t Range[0, 19]! CoefficientList[Series[((1-4x)^(-1/4)), {x, 0, 19}], x] (* _Vincenzo Librandi_, Oct 08 2015 *)

%o (PARI) {a(n) = if( n<0, 1 / prod(k=1, -n, 1 - 4*k), prod(k=1, n, 4*k - 3))}; /* _Michael Somos_, Jan 17 2014 */

%o (Maxima) A007696(n):=prod(4*k+1,k,0,n-1)$

%o makelist(A007696(n),n,0,30); /* _Martin Ettl_, Nov 05 2012 */

%o (Magma) [n le 2 select 1 else (4*(n-1)-7)*(Self(n-1) + 4*Self(n-2)): n in [1..20]]; // _G. C. Greubel_, Aug 15 2019

%o (Sage) [4^n*rising_factorial(1/4, n) for n in (0..20)] # _G. C. Greubel_, Aug 15 2019

%o (GAP) a:=[1,1];; for n in [3..20] do a[n]:=(4*(n-1)-7)*(a[n-1]+4*a[n-2]); od; a; # _G. C. Greubel_, Aug 15 2019

%Y Cf. A001147, A001813, A004981, A007559, A008545, A034255, A047053, A051142, A264781.

%Y a(n) = A049029(n, 1) for n >= 1 (first column of triangle).

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E Better description from _Wolfdieter Lang_, Dec 11 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 00:21 EDT 2024. Contains 373362 sequences. (Running on oeis4.)