The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007403 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^3 = (n+2)*2^(3*n-1) - 3*2^(n-2)*n*binomial(2*n,n).
(Formerly M4656)
10

%I M4656 #58 Oct 23 2023 11:13:39

%S 1,9,92,920,8928,84448,782464,7130880,64117760,570166784,5023524864,

%T 43915595776,381350330368,3292451880960,28283033157632,

%U 241884640182272,2060565937127424,17492250190544896,148027589475696640

%N a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^3 = (n+2)*2^(3*n-1) - 3*2^(n-2)*n*binomial(2*n,n).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A007403/b007403.txt">Table of n, a(n) for n = 0..1104</a> (terms 0..200 from Vincenzo Librandi)

%H G. E. Andrews and P. Paule, <a href="https://www.emis.de/journals/SLC/wpapers/s42paule.html">MacMahon's partition analysis. IV. Hypergeometric multisums</a>, In The Andrews Festschrift (Maratea, 1998). Sem. Lothar. Combin. 42 (1999), Art. B42i, 24 pp.

%H N. J. Calkin, <a href="http://dx.doi.org/10.1016/0012-365X(94)90394-8">A curious binomial identity</a>, Discr. Math., 131 (194), 335-337.

%H Bing He, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p17">Some identities involving the partial sum of q-binomial coefficients</a>, Electronic J. Combin,, 21 (2014), #P3.17. Gives generalizations. - _N. J. A. Sloane_, Jul 26 2014

%H M. Hirschhorn, <a href="http://dx.doi.org/10.1016/0012-365X(95)00086-C">Calkin's binomial identity</a>, Discr. Math., 159 (1996), 273-278.

%H C. L. Mallows, <a href="/A007403/a007403.png">Letter to N. J. Calkin</a> [Included with permission]

%H Jun Wang and Zhizheng Zhang, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00206-1">On extensions of Calkin's binomial identities</a>, Discrete Math., 274 (2004), 331-342.

%F G.f.: (1 - (4 + 3*sqrt(1 - 8*x))*x)/(1 - 8*x)^2. - _Harvey P. Dale_, Jun 30 2011

%F E.g.f.: exp(8*x)*(1 + 4*x) - 3*x*exp(4*x)*(BesselI(0,4*x) + BesselI(1,4*x)). - _Ilya Gutkovskiy_, Aug 15 2018

%F a(n) ~ n * 2^(3*n-1) * (1 - 3/(2*sqrt(Pi*n))). - _Vaclav Kotesovec_, Aug 18 2018

%p f:=n->n*8^n/2+8^n-(3*n/4)*2^n*binomial(2*n,n);

%p [seq(f(n),n=0..50)];

%p A:=proc(n,k) local j; add(binomial(n,j),j=0..k); end;

%p S:=proc(n,p) local i; global A; add(A(n,i)^p, i=0..n); end;

%p [seq(S(n,3),n=0..50)]; # _N. J. A. Sloane_, Nov 17 2017

%t Table[(n+2)2^(3n-1)-3 2^(n-2)n Binomial[2n,n],{n,0,20}] (* _Harvey P. Dale_, Jun 30 2011 *)

%t CoefficientList[Series[(1 - (4 + 3 Sqrt[1 - 8 x]) x)/(1 - 8 x)^2, {x, 0, 30}], x] (* _Vincenzo Librandi_, Jul 27 2014 *)

%t nmax = 18; CoefficientList[Series[Exp[8 x] (1 + 4 x) - 3 x Exp[4 x] (BesselI[0, 4 x] + BesselI[1, 4 x]), {x, 0, nmax}], x] Range[0, nmax]! (* _Ilya Gutkovskiy_, Aug 18 2018 *)

%o (Magma) [(n+2)*2^(3*n-1)-3*2^(n-2)*n*Binomial(2*n,n): n in [0..20]]; // _Vincenzo Librandi_, Jul 27 2014

%o (GAP) List([0..20],n->Sum([0..n],m->Sum([0..m],k->Binomial(n,k))^3)); # _Muniru A Asiru_, Aug 15 2018

%o (PARI) a(n)=(n+2)<<(3*n-1)-3*n*binomial(2*n,n)<<(n-2) \\ _Charles R Greathouse IV_, Oct 23 2023

%Y If the exponent E in a(n) = Sum_{m=0..n} (Sum_{k=0..m} C(n,k))^E is 1, 2, 3, 4, 5 we get A001792, A003583, A007403, A294435, A294436 respectively.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_, _Mira Bernstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 05:57 EDT 2024. Contains 373144 sequences. (Running on oeis4.)