The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007317 Binomial transform of Catalan numbers.
(Formerly M1480)
111

%I M1480 #305 Mar 01 2024 09:57:59

%S 1,2,5,15,51,188,731,2950,12235,51822,223191,974427,4302645,19181100,

%T 86211885,390248055,1777495635,8140539950,37463689775,173164232965,

%U 803539474345,3741930523740,17481709707825,81912506777200,384847173838501,1812610804416698

%N Binomial transform of Catalan numbers.

%C Partial sums of A002212 (the restricted hexagonal polyominoes with n cells). Number of Schroeder paths (i.e., consisting of steps U=(1,1),D=(1,-1),H=(2,0) and never going below the x-axis) from (0,0) to (2n-2,0), with no peaks at even level. Example: a(3)=5 because among the six Schroeder paths from (0,0) to (4,0) only UUDD has a peak at an even level. - _Emeric Deutsch_, Dec 06 2003

%C Number of binary trees of weight n where leaves have positive integer weights. Non-commutative Non-associative version of partitions of n. - _Michael Somos_, May 23 2005

%C Appears also as the number of Euler trees with total weight n (associated with even switching class of matrices of order 2n). - _David Garber_, Sep 19 2005

%C Number of symmetric hex trees with 2n-1 edges; also number of symmetric hex trees with 2n-2 edges. A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). A hex tree is symmetric if it is identical with its reflection in a bisector through the root. - _Emeric Deutsch_, Dec 19 2006

%C The Hankel transform of [1, 2, 5, 15, 51, 188, ...] is [1, 1, 1, 1, 1, ...], see A000012 ; the Hankel transform of [2, 5, 15, 51, 188, 731, ...] is [2, 5, 13, 34, 89, ...], see A001519. - _Philippe Deléham_, Dec 19 2006

%C a(n) = number of 321-avoiding partitions of [n]. A partition is 321-avoiding if the permutation obtained from its canonical form (entries in each block listed in increasing order and blocks listed in increasing order of their first entries) is 321-avoiding. For example, the only partition of [5] that fails to be 321-avoiding is 15/24/3 because the entries 5,4,3 in the permutation 15243 form a 321 pattern. - _David Callan_, Jul 22 2008

%C The sequence 1,1,2,5,15,51,188,... has Hankel transform A001519. - _Paul Barry_, Jan 13 2009

%C From _Gary W. Adamson_, May 17 2009: (Start)

%C Equals INVERT transform of A033321: (1, 1, 2, 6, 21, 79, 311, ...).

%C Equals INVERTi transform of A002212: (1, 3, 10, 36, 137, ...).

%C Convolved with A026378, (1, 4, 17, 75, 339, ...) = A026376: (1, 6, 30, 144, ...)

%C (End)

%C a(n) is the number of vertices of the composihedron CK(n). The composihedra are a sequence of convex polytopes used to define maps of certain homotopy H-spaces. They are cellular quotients of the multiplihedra and cellular covers of the cubes. - Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009

%C a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 3 colors. Example: a(4)=15 because we have 2^3 = 8 paths of shape UHD, 2 paths of shape HUD, 2 paths of shape UDH, and 3 paths of shape UHD; here U=(1,1), H=(1,0), and D=(1,-1). - _Emeric Deutsch_, May 02 2011

%C REVERT transform of (1, 2, -3, 5, -8, 13, -21, 34, ... ) where the entries are Fibonacci numbers, A000045. Equivalently, coefficients in the series reversion of x(1-x)/(1+x-x^2). This means that the substitution of the gf (1-x-(1-6x+5x^2)^(1/2))/(2(1-x)) for x in x(1-x)/(1+x-x^2) will simplify to x. - _David Callan_, Nov 11 2012

%C The number of plane trees with nodes that have positive integer weights and whose total weight is n. - _Brad R. Jones_, Jun 12 2014

%C From _Tom Copeland_, Nov 02 2014: (Start)

%C Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).

%C Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].

%C Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).

%C BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).

%C Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).

%C Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].

%C (End)

%C Starting with offset 0, a(n) is also the number of Schröder paths of semilength n avoiding UH (an up step directly followed by a long horizontal step). Example: a(2)=5 because among the six possible Schröder paths of semilength 2 only UHD contains UH. - _Valerie Roitner_, Jul 23 2020

%D J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A007317/b007317.txt">Table of n, a(n) for n=1..200</a>

%H Roland Bacher and David Garber, <a href="http://arxiv.org/abs/math/0205245">Spindle-configurations of skew lines</a>, arXiv:math/0205245 [math.GT], 2002-2005.

%H Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, <a href="https://arxiv.org/abs/2308.09344">On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks</a>, arXiv:2308.09344 [math.CO], 2023.

%H Paul Barry, <a href="http://dx.doi.org/10.1016/j.laa.2015.10.032">Riordan arrays, generalized Narayana triangles, and series reversion</a>, Linear Algebra and its Applications, 491 (2016) 343-385.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Barry/barry444.html">On the Central Antecedents of Integer (and Other) Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.

%H Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html">The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences</a>, J. Int. Seq. 13 (2010) # 10.8.2.

%H Andrew M. Baxter and Lara K. Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/AvoidingPairs.pdf">Ascent sequences avoiding pairs of patterns</a>, 2015.

%H Janusz Brzozowski and Marek Szykula, <a href="http://arxiv.org/abs/1401.0157">Large Aperiodic Semigroups</a>, arXiv preprint arXiv:1401.0157 [cs.FL], 2013-2014.

%H David Callan, <a href="http://arxiv.org/abs/0802.2275">Pattern avoidance in "flattened" partitions </a>, arXiv:0802.2275 [math.CO], 2008.

%H H. Cambazard and N. Catusse, <a href="http://arxiv.org/abs/1512.06649">Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane</a>, arXiv preprint arXiv:1512.06649 [cs.DS], 2015-2017.

%H Giulio Cerbai, <a href="https://arxiv.org/abs/2401.10027">Pattern-avoiding modified ascent sequences</a>, arXiv:2401.10027 [math.CO], 2024. See p. 17.

%H Giulio Cerbai, Anders Claesson, Luca Ferrari, and Einar Steingrímsson, <a href="https://arxiv.org/abs/2006.05692">Sorting with pattern-avoiding stacks: the 132-machine</a>, arXiv:2006.05692 [math.CO], 2020.

%H Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, <a href="https://doi.org/10.37236/4793">Combinatorial proofs of addition formulas</a>, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.

%H Harry Crane, <a href="https://ajc.maths.uq.edu.au/pdf/61/ajc_v61_p057.pdf">Left-right arrangements, set partitions, and pattern avoidance</a>, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.

%H S. J. Cyvin et al., <a href="http://dx.doi.org/10.1021/ci00009a021">Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices</a>, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.

%H S. J. Cyvin et al., <a href="http://dx.doi.org/10.1016/0166-1280(93)87033-A">Graph-theoretical studies on fluoranthenoids and fluorenoids:enumeration of some catacondensed systems</a>, J. Molec. Struct. (Theochem), 285 (1993), 179-185.

%H S. J. Cyvin et al., <a href="http://dx.doi.org/10.1021/ci00021a026">Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes</a>, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.

%H Dennis E. Davenport, Louis W. Shapiro, and Leon C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012

%H Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.

%H Rui Duarte and António Guedes de Oliveira, <a href="https://www.cmup.pt/sites/default/files/2023-08/GF_LP_corrected_0.pdf">Generating functions of lattice paths</a>, Univ. do Porto (Portugal 2023).

%H Paul Duncan and Einar Steingrimsson, <a href="http://arxiv.org/abs/1109.3641">Pattern avoidance in ascent sequences</a>, arXiv preprint arXiv:1109.3641 [math.CO], 2011.

%H Francesc Fite, Kiran S. Kedlaya, Victor Rotger, and Andrew V. Sutherland, <a href="http://arxiv.org/abs/1110.6638">Sato-Tate distributions and Galois endomorphism modules in genus 2</a>, arXiv preprint arXiv:1110.6638 [math.NT], 2011-2012.

%H S. Forcey, <a href="http://www.intlpress.com/HHA/v10/n2/a12/">Quotients of the multiplihedron as categorified associahedra</a>,Homotopy, Homology and Applications, vol. 10(2), 227-256, 2008. [From Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009]

%H Ira M. Gessel and Jang Soo Kim, <a href="http://arxiv.org/abs/1003.5301">A note on 2-distant noncrossing partitions and weighted Motzkin paths</a>, arXiv:1003.5301 [math.CO], 2010.

%H Ira M. Gessel and Jang Soo Kim, <a href="http://dx.doi.org/10.1016/j.disc.2010.07.017">A note on 2-distant noncrossing partitions and weighted Motzkin paths</a>, Discrete Math. 310 (2010), no. 23, 3421--3425. MR2721104 (2011j:05350). See Eq. (1). - _N. J. A. Sloane_, Jul 05 2014

%H Juan B. Gil and Jordan O. Tirrell, <a href="https://arxiv.org/abs/1806.09065">A simple bijection for classical and enhanced k-noncrossing partitions</a>, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705

%H Juan B. Gil and Michael D. Weiner, <a href="https://arxiv.org/abs/1812.01682">On pattern-avoiding Fishburn permutations</a>, arXiv:1812.01682 [math.CO], 2018.

%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See pp. 18-19.

%H U. Grude, <a href="http://www.tfh-berlin.de/~grude/PapRekursion.pdf">Java ist eine Sprache: Rekursive Unterprogramme</a>. See page 4.

%H Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, <a href="http://dx.doi.org/10.1016/j.disc.2007.04.007">2-Binary trees: bijections and related issues</a>, Discr. Math., 308 (2008), 1209-1221.

%H Frank Harary and Ronald C. Read, <a href="http://dx.doi.org/10.1017/S0013091500009135">The enumeration of tree-like polyhexes</a>, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=124">Encyclopedia of Combinatorial Structures 124</a>

%H Bradley Robert Jones, <a href="http://summit.sfu.ca/item/14554">On tree hook length formulas, Feynman rules and B-series</a>, Master's thesis, Simon Fraser University, 2014.

%H Hana Kim and R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers/hextrees.pdf">A refined enumeration of hex trees and related polynomials</a>, Preprint 2015.

%H Jang Soo Kim, <a href="http://dx.doi.org/10.1016/j.disc.2011.02.020">Bijections on two variations of noncrossing partitions</a>, Discrete Math., 311 (2011), 1057-1063.

%H John W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.

%H Toufik Mansour and Simone Severini, <a href="http://dx.doi.org/10.1016/j.disc.2007.08.068">Enumeration of (k,2)-noncrossing partitions</a>, Discrete Math., 308 (2008), 4570-4577.

%H Toufik Mansour and Mark Shattuck, <a href="http://arxiv.org/abs/1207.3755">Some enumerative results related to ascent sequences</a>, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012

%H Igor Pak, <a href="http://dx.doi.org/10.1090/S0002-9939-04-07031-5">Partition identities and geometric bijections</a>, Proc. Amer. Math. Soc. 132 (2004), 3457-3462.

%H Lara K. Pudwell, <a href="http://arxiv.org/abs/1408.6823">Ascent sequences and the binomial convolution of Catalan numbers</a>, arXiv:1408.6823 [math.CO], 2014.

%H Lara Pudwell and Andrew Baxter, <a href="http://faculty.valpo.edu/lpudwell/slides/pp2014_pudwell.pdf">Ascent sequences avoiding pairs of patterns</a>, 2014.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/slides/ascseq.pdf">Pattern-avoiding ascent sequences</a>, Slides from a talk, 2015.

%H Valerie Roitner, <a href="https://arxiv.org/abs/2008.02240">The vectorial kernel method for walks with longer steps</a>, arXiv:2008.02240 [math.CO], 2020.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Makhin Thitsa and W. Steven Gray, <a href="http://dx.doi.org/10.1137/110852760">On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems</a>, SIAM Journal on Control and Optimization, Vol. 50, No. 5, 2012, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012

%H S. H. F. Yan, <a href="http://www.m-hikari.com/ijcms-password2009/17-20-2009/yanIJCMS17-20-2009.pdf">Schröder paths and Pattern Avoiding Partitions</a>, Int. J. Contemp. Math. Sciences, Vol. 4, no. 20, pp. 979-986, 2009.

%F (n+2)*a(n+2) = (6n+4)*a(n+1) - 5n*a(n).

%F G.f.: 3/2-(1/2)*sqrt((1-5*x)/(1-x)) [Gessel-Kim]. - _N. J. A. Sloane_, Jul 05 2014

%F G.f. for sequence doubled: (1/(2*x))*(1+x-(1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)).

%F a(n) = hypergeom([1/2, -n], [2], -4), n=0, 1, 2...; Integral representation as n-th moment of a positive function on a finite interval of the positive half-axis: a(n)=int(x^n*sqrt((5-x)/(x-1))/(2*Pi), x=1..5), n=0, 1, 2... This representation is unique. - _Karol A. Penson_, Sep 24 2001

%F a(1)=1, a(n)=1+sum(i=1, n-1, a(i)*a(n-i)). - _Benoit Cloitre_, Mar 16 2004

%F a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*binomial(k, floor(k/2)) [offset 0]. - _Paul Barry_, Jan 27 2005

%F G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=x-(1-x)(y-y^2). - _Michael Somos_, May 23 2005

%F G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(x, y, z)=x(z-z^2)+(x-1)y^2 . - _Michael Somos_, May 23 2005

%F G.f. (for offset 0): (-1+x+(1-6*x+5*x^2)^(1/2))/(2*(-x+x^2)).

%F G.f. =z*c(z/(1-z))/(1-z) = 1/2 - (1/2)sqrt(1-4z/(1-z)), where c(z)=(1-sqrt(1-4z))/(2z) is the Catalan function (follows from Michael Somos' first comment). - _Emeric Deutsch_, Aug 12 2007

%F G.f.: 1/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - _Paul Barry_, Apr 19 2009

%F a(n) = Sum_{k, 0<=k<=n} A091965(n,k)*(-1)^k. - _Philippe Deléham_, Nov 28 2009

%F E.g.f.: exp(3x)*(I_0(2x)-I_1(2x)), where I_k(x) is a modified Bessel function of the first kind. - _Emanuele Munarini_, Apr 15 2011

%F If we prefix sequence with an additional term a(0)=1, g.f. is (3-3*x-sqrt(1-6*x+5*x^2))/(2*(1-x)). [See Kim, 2011] - _N. J. A. Sloane_, May 13 2011

%F From _Gary W. Adamson_, Jul 21 2011: (Start)

%F a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:

%F 2, 1, 0, 0, 0, 0, ...

%F 1, 2, 1, 0, 0, 0, ...

%F 1, 1, 2, 1, 0, 0, ...

%F 1, 1, 1, 2, 1, 0, ...

%F 1, 1, 1, 1, 2, 1, ...

%F 1, 1, 1, 1, 1, 2, ...

%F ... (End)

%F G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(n+1))/(1 - A(x)); offset=0. - _Paul D. Hanna_, Nov 07 2011

%F G.f.: 1/x - 1/x/Q(0), where Q(k)= 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 14 2013

%F G.f.: (1-x - (1-5*x)*G(0))/(2*x*(1-x)), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 25 2013

%F Asymptotics (for offset 0): a(n) ~ 5^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Jun 28 2013

%F G.f.: G(0)/(1-x), where G(k) = 1 + (4*k+1)*x/((k+1)*(1-x) - 2*x*(1-x)*(k+1)*(4*k+3)/(2*x*(4*k+3) + (2*k+3)*(1-x)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 29 2014

%F a(n) = JacobiP(n-1,1,-n-1/2,9)/n. - _Peter Luschny_, Sep 23 2014

%F 0 = +a(n)*(+25*a(n+1) -50*a(n+2) +15*a(n+3)) +a(n+1)*(-10*a(n+1) +31*a(n+2) -14*a(n+3)) +a(n+2)*(+2*a(n+2) +a(n+3)) for all n in Z. - _Michael Somos_, Jan 17 2018

%F a(n+1) = (2/Pi) * Integral_{x = -1..1} (m + 4*x^2)^n*sqrt(1 - x^2) dx at m = 1. In general, the integral, qua sequence in n, gives the m-th binomial transform of the Catalan numbers. - _Peter Bala_, Jan 26 2020

%e a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.

%e G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018

%p G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # _Emeric Deutsch_, Aug 12 2007

%p seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # _Peter Luschny_, Sep 23 2014

%t Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* _Len Smiley_, Apr 10 2000 *)

%t Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* _Robert G. Wilson v_, Apr 15 2011 *)

%t a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Aug 07 2012 *)

%t Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* _Vincenzo Librandi_, Nov 03 2014 *)

%t Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* _Vaclav Kotesovec_, May 12 2022 *)

%o (PARI) {a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* _Michael Somos_, May 23 2005 */

%o (PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* _Michael Somos_, May 23 2005 */

%o (PARI) /* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ _Paul D. Hanna_

%Y See A181768 for another version. - _N. J. A. Sloane_, Nov 12 2010

%Y First column of triangle A104259. Row sums of absolute values of A091699.

%Y Number of vertices of multiplihedron A121988.

%Y m-th binomial transform of the Catalan numbers: A126930 (m = -2), A005043 (m = -1), A000108 (m = 0), A064613 (m = 2), A104455 (m = 3), A104498 (m = 4) and A154623 (m = 5).

%Y Cf. A055879, A033321, A026376, A026378, A059346, A000045, A000957, A057078, A091867, A104597, A249548, A162326.

%K easy,nonn,nice

%O 1,2

%A _N. J. A. Sloane_, _Mira Bernstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 04:15 EDT 2024. Contains 372528 sequences. (Running on oeis4.)