The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006673 E.g.f. is the logarithmic derivative of e.g.f. for Pell numbers [1, 0, 1, 2, 5, ...]. 1
0, 1, 2, 2, -8, -56, -112, 848, 9088, 25216, -310528, -4334848, -14701568, 270029824, 4554426368, 17536821248, -458243735552, -8926669144064, -37024075153408, 1341521605885952, 29290212127670272, 125297096967061504, -6224109737622372352 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
It looks like the signs have a repeating pattern of +, +, +, -, -, -, etc.; however, a(42) breaks this pattern by being positive after a string of only two negative terms. The sequence oscillates because it has two dominant singularities; the oscillation is irregular and unpredictable because the arguments of the singularities are not rational multiples of Pi; the oscillation first appears regular with period 6 because the arguments of the singularities are +- 1.01*Pi/3, which is very close to 1/6 of the circle. All of this can be proved with the standard techniques of analytic combinatorics (see the Flajolet and Sedgewick reference). - Justin M. Troyka, Jun 20 2019
REFERENCES
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, Cambridge, 2009, pages 258-259 ("Expansion of meromorphic functions") and 264-266 ("Nonperiodic fluctuations").
LINKS
Justin M. Troyka, Period mimicry: A note on the (-1)-evaluation of the peak polynomials, arXiv:1907.06681 [math.CO], 2019.
FORMULA
G.f.: 1-2/Q(0) where Q(k) = 1 + 1/(1 + 2*(k+1)/(-1/x +(2*k+2)/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 23 2012
G.f.: -1/Q(0), where Q(k) = 2*k+2 - 1/x + (k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 15 2013
G.f.: 1/Q(0), where Q(k)= 1/(x*(k+1)) - 2 + 1/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 07 2013
G.f.: x/Q(0), m=-2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
E.g.f.: 2*x/Q(0), where Q(k) = 8*k+2 - 2*x/(1 + 2*x/(4*k+3 - 2*x/(1 + 2*x/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2013
E.g.f.: sqrt(2)/(sqrt(2) - tanh(sqrt(2)*x)) -1 = W(0) -1, where W(k) = 1 + x/(4*k+1 - 1*x/(1 + 2*x/(4*k+3 - 2*x/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2014
a(n) ~ (-2) cos((n+1)*t) R^(-(n+1)) n!, where t = arctan(y/x) and R = sqrt(x^2+y^2), where x = log(3+2*sqrt(2))/(2*sqrt(2)) and y = Pi/(2*sqrt(2)) (note that R is approximately 1.274 and t is approximately 1.012*Pi/3). This formula follows from the standard techniques of analytic combinatorics (see the Flajolet and Sedgewick reference). - Justin M. Troyka, Jun 20 2019
a(n+1) = 2*a(n) - Sum_{k=1..n-1} binomial(n,k) * a(k) * a(n-k) if n>=1. - Michael Somos, Apr 22 2020
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 - 8*x^4 - 56*x^5 - 112*x^6 + 848*x^7 + 9088*x^8 + ...
MAPLE
# After Sergei N. Gladkovskii.
seq(k!*coeff(series(1/(sqrt(2)*coth(sqrt(2)*x)-1), x=0, k+2), x, k), k=0..21); # Peter Luschny, Nov 18 2014
MATHEMATICA
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 - Tanh[ x Sqrt[2]] / Sqrt[2]) - 1, {x, 0, n}]]; (* Michael Somos, Nov 22 2014 *)
PROG
(PARI) {a(n) = my(w=quadgen(8)); if( n<0, 0, n! * polcoeff( 1 / (1 - tanh(w*x + x * O(x^n)) / w) - 1, n))}; /* Michael Somos, Nov 22 2014 */
(PARI) {a(n) = n--; if(n < 1, n==0, 2*a(n) - sum(k=1, n-1, binomial(n, k) * a(k) * a(n-k)))}; /* Michael Somos, Apr 22 2020 */
CROSSREFS
Cf. A000129.
Sequence in context: A264835 A032030 A184347 * A354065 A053978 A181264
KEYWORD
sign
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 16:36 EDT 2024. Contains 372765 sequences. (Running on oeis4.)