The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006497 a(n) = 3*a(n-1) + a(n-2) with a(0) = 2, a(1) = 3.
(Formerly M0910)
45

%I M0910 #135 Feb 14 2024 10:13:11

%S 2,3,11,36,119,393,1298,4287,14159,46764,154451,510117,1684802,

%T 5564523,18378371,60699636,200477279,662131473,2186871698,7222746567,

%U 23855111399,78788080764,260219353691,859446141837,2838557779202

%N a(n) = 3*a(n-1) + a(n-2) with a(0) = 2, a(1) = 3.

%C For more information about this type of recurrence follow the Khovanova link and see A086902 and A054413. - _Johannes W. Meijer_, Jun 12 2010

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006497/b006497.txt">Table of n, a(n) for n = 0..1000</a>

%H P. Bhadouria, D. Jhala, and B. Singh, <a href="http://dx.doi.org/10.22436/jmcs.08.01.07">Binomial Transforms of the k-Lucas Sequences and its [sic] Properties</a>, Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92, Sequence L_{3,n}.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/15-4/horadam.pdf">Generating identities for generalized Fibonacci and Lucas triples</a>, Fib. Quart., 15 (1977), 289-292.

%H Haruo Hosoya, <a href="http://www.hyle.org/journal/issues/19-1/hosoya.htm">What Can Mathematical Chemistry Contribute to the Development of Mathematics?</a>, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, <a href="https://arxiv.org/abs/1904.13002">The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d))</a>, arXiv:1904.13002 [math.NT], 2019.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,1).

%F G.f.: (2-3*x)/(1-3*x-x^2). - _Simon Plouffe_ in his 1992 dissertation

%F From _Gary W. Adamson_, Jun 15 2003: (Start)

%F a(n) = ((3 + sqrt(13))/2)^n + ((3 - sqrt(13))/2)^n. See bronze mean (A098316).

%F A006190(n-2) + A006190(n) = a(n-1).

%F a(n)^2 - 13*A006190(n)^2 = 4(-1)^n. (End)

%F From _Paul Barry_, Nov 15 2003: (Start)

%F E.g.f.: 2*exp(3*x/2)*cosh(sqrt(13)*x/2).

%F a(n) = 2^(1-n)*Sum_{k=0..floor(n/2)} C(n, 2*k)* (13)^k * 3^(n-2*k).

%F a(n) = 2*T(n, 3i/2)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. (End)

%F From _Hieronymus Fischer_, Jan 02 2009: (Start)

%F fract(((3+sqrt(13))/2)^n)) = (1/2)*(1+(-1)^n) - (-1)^n*((3+sqrt(13))/2)^(-n) = (1/2)*(1+(-1)^n) - ((3-sqrt(13))/2)^n.

%F See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).

%F a(n) = round(((3+sqrt(13))/2)^n) for n > 0. (End)

%F From _Johannes W. Meijer_, Jun 12 2010: (Start)

%F a(2n+1) = 3*A097783(n), a(2n) = A057076(n).

%F a(3n+1) = A041018(5n), a(3n+2) = A041018(5n+3) and a(3n+3) = 2*A041018(5n+4).

%F Limit_{k -> infinity} a(n+k)/a(k) = (a(n) + A006190(n)*sqrt(13))/2.

%F Limit_{n -> infinity} a(n)/A006190(n) = sqrt(13).

%F (End)

%F a(n) = sqrt(13*(A006190(n))^2 + 4*(-1)^n). - _Vladimir Shevelev_, Mar 13 2013

%F G.f.: G(0), where G(k) = 1 + 1/(1 - (x*(13*k-9))/((x*(13*k+4)) - 6/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 15 2013

%F a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 13*x^2))/2 )^n for n >= 1. - _Peter Bala_, Jun 23 2015

%F a(n) = Lucas(n,3), Lucas polynomials, L(n,x), evaluated at x=3. - _G. C. Greubel_, Jun 06 2019

%F a(n) = 2 * Sum_{k=0..n-2} A168561(n-2,k)*3^k + 3 * Sum_{k=0..n-1} A168561(n-1,k)*3^k, n>0. - _R. J. Mathar_, Feb 14 2024

%F a(n) = 2*A006190(n+1) - 3*A006190(n). - _R. J. Mathar_, Feb 14 2024

%p a:= n-> (<<0|1>, <1|3>>^n. <<2, 3>>)[1, 1]:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jan 26 2018

%t Table[LucasL[n, 3], {n, 0, 30}] (* _Zerinvary Lajos_, Jul 09 2009 *)

%t LucasL[Range[0, 30], 3] (* _Eric W. Weisstein_, Apr 17 2018 *)

%t LinearRecurrence[{3,1},{2,3},30] (* _Harvey P. Dale_, Feb 17 2020 *)

%o (Sage) [lucas_number2(n,3,-1) for n in range(0, 30)] # _Zerinvary Lajos_, Apr 30 2009

%o (Magma) [ n eq 1 select 2 else n eq 2 select 3 else 3*Self(n-1)+Self(n-2): n in [1..30] ]; // _Vincenzo Librandi_, Aug 20 2011

%o (Haskell)

%o a006497 n = a006497_list !! n

%o a006497_list = 2 : 3 : zipWith (+) (map (* 3) $ tail a006497_list) a006497_list

%o -- _Reinhard Zumkeller_, Feb 19 2011

%o (PARI) my(x='x+O('x^30)); Vec((2-3*x)/(1-3*x-x^2)) \\ _G. C. Greubel_, Jul 05 2017

%o (PARI) apply( {A006497(n)=[2,3]*([0,1;1,3]^n)[,1]}, [0..30]) \\ _M. F. Hasler_, Mar 06 2020

%Y Cf. A006190, A100230, A001622, A014176, A080039, A098316.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Definition completed by _M. F. Hasler_, Mar 06 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 16:16 EDT 2024. Contains 372522 sequences. (Running on oeis4.)