

FIG. 1. Tetrahedral-symmetric Hamiltonian family of algebraic sphere curves (left), and the corresponding period function (right). The \mathbf{J} vector precesses around curve \mathcal{C}_{α} with period $T(\alpha)$. Both graphs depict values: $|\alpha|=\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ (blue, green) and $\alpha=0$ (red). This geometry breaks time reversal symmetry as $t \rightarrow-t$ permutes curves \mathcal{C}_{α} and $\mathcal{C}_{-\alpha}$.

TABLE I. Data for certification of the period function $T(\alpha)$ along sphere curves \mathcal{C}_{α}.

$\mathcal{C}_{\alpha}=\left\{\mathbf{J} \in \mathbb{S}^{2}: \alpha=H(\mathbf{J})=J_{z}^{3}+(\sqrt{2} / 2)\left(J_{x}^{3}-3 J_{x} J_{y}^{2}\right)-(3 / 2)\left(J_{x}^{2} J_{z}+J_{y}^{2} J_{z}\right)\right\}$
$\widehat{\mathcal{A}}=\sum_{j=0}^{2} \sum_{k=0}^{3} \mathcal{A}_{j, k} \alpha^{k} \partial_{\alpha}^{j}=8 \alpha+9\left(3 \alpha^{2}-1\right) \partial_{\alpha}-9 \alpha\left(1-\alpha^{2}\right)$
$\Omega(\mathbf{J})=3 \dot{J}_{z}\left(\dot{\gamma}\left(1-J_{z}^{2}\right)\right)^{-3}\left(2 \alpha J_{z}-1-\alpha^{2}\right) \quad$ with $\quad \dot{\mathbf{J}}=\partial_{\mathbf{J}} H \times \mathbf{J}, \quad \partial_{\alpha} J_{z}=1 / \dot{\gamma}$.
$\widehat{\mathcal{A}} \circ d t=\frac{d}{d t} \Omega(\mathbf{J}), \quad$ and around loops of $\mathcal{C}_{\alpha}, \quad \widehat{\mathcal{A}} \circ \oint d t=\widehat{\mathcal{A}} \circ T(\alpha)=0$.

-Bradley Klee, September 1, 2018.

