login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006359 Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.
(Formerly M4148)
18
1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, 1897214, 7869927, 32645269, 135416457, 561722840, 2330091144, 9665485440, 40093544735, 166312629795, 689883899612, 2861717685450, 11870733787751, 49241167758705, 204258021937291, 847285745315256 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Let M denotes the 6 X 6 matrix = row by row (1,1,1,1,1,1)(1,1,1,1,1,0)(1,1,1,1,0,0)(1,1,1,0,0,0)(1,1,0,0,0,0)(1,0,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1) then a(n) = x(n). - Benoit Cloitre, Apr 02 2002
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Emma L. L. Gao, Sergey Kitaev, and Philip B. Zhang, Pattern-avoiding alternating words, arXiv:1505.04078 [math.CO], 2015.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
FORMULA
G.f.: -(z^4 + z^3 - 3z^2 - 2z + 1) / (-1 + 3z + 6z^2 - 4z^3 - 5z^4 + z^5 + z^6). - M. Goebel (manfredg(AT)ICSI.Berkeley.EDU) Jul 26 1997
a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6).
a(n) is asymptotic to z(6)*w(6)^n where w(6) = (1/2)/cos(6*Pi/13) and z(6) is the root 1 < x < 2 of P(6, X) = -1 - 91*X + 2366*X^2 + 26364*X^3 - 142805*X^4 - 371293*X^5 + 371293*X^6 - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 3*x - 3*x^2 - 4*x^3 + x^4 + x^5)/(1 - 3*x - 6*x^2 + 4*x^3 + 5*x^4 - x^5 - x^6). - Paul D. Hanna, Feb 06 2006
G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))). - Paul Barry, Mar 24 2010
MAPLE
A=seq(a.j, j=0..5):grammar1:=[Q5, { seq(Q.i=Union(Epsilon, seq(Prod(a.j, Q.j), j=5-i..5)), i=0..5), seq(a.j=Z, j=0..5) }, unlabeled]: seq(count(grammar1, size=j), j=0..22); # Zerinvary Lajos, Mar 09 2007
MATHEMATICA
LinearRecurrence[{3, 6, -4, -5, 1, 1}, {1, 6, 21, 91, 371, 1547}, 30] (* Harvey P. Dale, Sep 03 2016 *)
PROG
(PARI) k=5; M(k)=matrix(k, k, i, j, if(1-sign(i+j-k), 0, 1)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
(PARI) {a(n)=local(p=6); polcoeff(sum(k=0, p-1, (-1)^((k+1)\2)*binomial((p+k-1)\2, k)* (-x)^k)/sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k+x*O(x^n)), n)} // Paul D. Hanna, Feb 06 2006
CROSSREFS
Sequence in context: A005498 A002222 A290355 * A001553 A369556 A009247
KEYWORD
nonn,easy,changed
AUTHOR
EXTENSIONS
Alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James A. Sellers, Dec 24 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 19:40 EDT 2024. Contains 372092 sequences. (Running on oeis4.)