The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006331 a(n) = n*(n+1)*(2*n+1)/3.
(Formerly M1963)
47

%I M1963 #197 Feb 19 2024 01:36:37

%S 0,2,10,28,60,110,182,280,408,570,770,1012,1300,1638,2030,2480,2992,

%T 3570,4218,4940,5740,6622,7590,8648,9800,11050,12402,13860,15428,

%U 17110,18910,20832,22880,25058,27370,29820,32412,35150,38038,41080,44280

%N a(n) = n*(n+1)*(2*n+1)/3.

%C Triangles in rhombic matchstick arrangement of side n.

%C Maximum accumulated number of electrons at energy level n. - _Scott A. Brown_, Feb 28 2000

%C Let M_n denote the n X n matrix M_n(i,j)=i^2+j^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - _Michael Somos_, Nov 14 2002

%C Convolution of odds (A005408) and evens (A005843). - _Graeme McRae_, Jun 06 2006

%C a(n) is the number of non-monotonic functions with domain {0,1,2} and codomain {0,1,...,n}. - _Dennis P. Walsh_, Apr 25 2011

%C For any odd number 2n+1, find Sum_{a<b, a+b=2n+1} a*b. This sum is equal to the n-th nonzero term of this sequence. Thus for 13=2*n+1, n=6; there are six products, 1*12 + 2*11 + 3*10 + 4*9 + 5*8 + 6*7 = 182, which is also twice the sum of the squares for n=6. - _J. M. Bergot_, Jul 16 2011

%C a(n) gives the number of (n+1) X (n+1) symmetric (0,1)-matrices containing three ones (see [Cameron]). - _L. Edson Jeffery_, Feb 18 2012

%C a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and |w - x| < y. - _Clark Kimberling_, Jun 02 2012

%C Partial sums of A001105. - _Omar E. Pol_, Jan 12 2013

%C Total number of square diagonals (of any size) in an n X n square grid. - _Wesley Ivan Hurt_, Mar 24 2015

%C Number of diagonal attacks of two queens on (n+1) X (n+1) chessboard. - _Antal Pinter_, Sep 20 2015

%C a(n) is the minimum value obtainable by partitioning either the set {x in the natural numbers | 1 <= x <= 2n} or the set {x in the natural numbers | 0 <= x <= 2n+1} into pairs, taking the product of all such pairs, and taking the sum of all such products. - _Thomas Anton_, Oct 21 2020

%C a(n) is the irregularity of the n-th power of a path of length at least 3*n. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - _Allan Bickle_, Jun 16 2023

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006331/b006331.txt">Table of n, a(n) for n = 0..10000</a>

%H J. L. Bailey, Jr., <a href="http://dx.doi.org/10.1214/aoms/1177732978">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.

%H J. L. Bailey, <a href="/A002309/a002309.pdf">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]

%H Rowan Beckworth, <a href="https://web.archive.org/web/20060302022601/http://users.senet.com.au/~rowanb/chem/atstruct.html">Basic atomic information</a>.

%H Allan Bickle and Zhongyuan Che, <a href="https://doi.org/10.1016/j.dam.2023.01.020">Irregularities of Maximal k-degenerate Graphs</a>, Discrete Applied Math. 331 (2023) 70-87.

%H Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5.

%H P. Cameron, T. Prellberg and D. Stark, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r85">Asymptotics for incidence matrix classes</a>, Electron. J. Combin. 13 (2006), #R85, p. 11.

%H Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, <a href="https://arxiv.org/abs/2307.13749">Semi-simplicial combinatorics of cyclinders and subdivisions</a>, arXiv:2307.13749 [math.CO], 2023. See p. 25.

%H N. S. S. Gu, H. Prodinger and S. Wagner, <a href="https://doi.org/10.1016/j.ejc.2009.10.007">Bijections for a class of labeled plane trees</a>, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.

%H Germain Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle}, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Dennis Walsh, <a href="http://frank.mtsu.edu/~dwalsh/MONOFUNC.pdf">Notes on finite monotonic and non-monotonic functions</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: 2*x*(1 + x)/(1 - x)^4. - _Simon Plouffe_ (in his 1992 dissertation)

%F a(n) = 2*binomial(n+1,3) + 2*binomial(n+2,3).

%F a(n) = 2*A000330(n) = A002492(n)/2.

%F a(n) = Sum_{i=0..n} T(i,n-i), array T as in A048147. - _N. J. A. Sloane_, Dec 11 1999

%F From the formula for the sum of squares of positive integers 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n+1)(2*n+1)/6, if we multiply both sides by 2 we get Sum_{k=0..n} 2*k^2 = n*(n+1)*(2*n+1)/3, which is an alternative formula for this sequence. - _Mike Warburton_, Sep 08 2007

%F 10*a(n) = A016755(n) - A001845(n); since A016755 are odd cubes and A001845 centered octahedral numbers, 10*a(n) are the "odd cubes without their octahedral contents." - _Damien Pras_, Mar 19 2011

%F a(n) = sum(a*b), where the summing is over all unordered partitions 2*n+1=a+b. - _Vladimir Shevelev_, May 11 2012

%F a(n) = binomial(2*n+2, 3)/2. - _Ronan Flatley_, Dec 13 2012

%F a(n) = A000292(n) + A002411(n). - _Omar E. Pol_, Jan 11 2013

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3, with a(0)=0, a(1)=2, a(2)=10, a(3)=28. - _Harvey P. Dale_, Apr 12 2013

%F a(n) = A208532(n+1,2). - _Philippe Deléham_, Dec 05 2013

%F Sum_{n>0} 1/a(n) = 9 - 12*log(2). - _Enrique Pérez Herrero_, Dec 03 2014

%F a(n) = A000292(n-1) + (n+1)*A000217(n). - _J. M. Bergot_, Sep 02 2015

%F a(n) = 2*(A000332(n+3) - A000332(n+1)). - _Antal Pinter_, Sep 20 2015

%F From _Bruno Berselli_, May 17 2018: (Start)

%F a(n) = n*A002378(n) - Sum_{k=0..n-1} A002378(k) for n>0, a(0)=0. Also:

%F A163102(n) = n*a(n) - Sum_{k=0..n-1} a(k) for n>0, A163102(0)=0. (End)

%F a(n) = A005900(n) - A000290(n) = A096000(n) - A000578(n+1) = A000578(n+1) - A084980(n+1) = A000578(n+1) - A077415(n)-1 = A112524(n) + 1 = A188475(n) - 1 = A061317(n) - A100178(n) = A035597(n+1) - A006331(n+1). - _Bruce J. Nicholson_, Jun 24 2018

%F E.g.f.: (1/3)*exp(x)*x*(6 + 9*x + 2*x^2). - _Stefano Spezia_, Jan 05 2020

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi - 9. - _Amiram Eldar_, Jan 04 2022

%e For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011

%e Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012

%p A006331 := proc(n)

%p n*(n+1)*(2*n+1)/3 ;

%p end proc:

%p seq(A006331(n),n=0..80) ; # _R. J. Mathar_, Sep 27 2013

%t Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* _Harvey P. Dale_, Apr 12 2013 *)

%o (PARI) a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)

%o (Magma) [n*(n+1)*(2*n+1)/3: n in [0..40]]; // _Vincenzo Librandi_, Aug 15 2011

%o (Haskell)

%o a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]

%o -- _Reinhard Zumkeller_, Feb 11 2012

%Y A row of A132339.

%Y Cf. A002378, A048147, A098077, A163102.

%Y Cf. A005900, A084980, A077415, A112524, A188475, A100178, A035597, A096000.

%Y Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 08:41 EDT 2024. Contains 372552 sequences. (Running on oeis4.)