The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006235 Complexity of doubled cycle (regarding case n = 2 as a multigraph).
(Formerly M4849)
7

%I M4849 #87 May 05 2024 20:01:26

%S 1,12,75,384,1805,8100,35287,150528,632025,2620860,10759331,43804800,

%T 177105253,711809364,2846259375,11330543616,44929049777,177540878700,

%U 699402223099,2747583822720,10766828545725,42095796462852,164244726238343,639620518118400,2486558615814025

%N Complexity of doubled cycle (regarding case n = 2 as a multigraph).

%C In plain English, a(n) is the number of spanning trees of the n-prism graph Y_n. - _Eric W. Weisstein_, Jul 15 2011

%C Also the number of spanning trees of the n-web graph. - _Eric W. Weisstein_, Jul 15 2011

%C Also the number of spanning trees of the n-dipyramidal graph. - _Eric W. Weisstein_, Jun 14 2018

%C Determinants of the spiral knots S(4,k,(1,-1,1)). a(k) = det(S(4,k,(1,-1,1))). These knots are also the weaving knots W(k,4) and the Turk's Head Links THK(4,k). - _Ryan Stees_, Dec 14 2014

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006235/b006235.txt">Table of n, a(n) for n = 1..200</a>

%H Zbigniew R. Bogdanowicz, <a href="https://www.dmlett.com/archive/v13/DML24_v13_pp66-73.pdf">The number of spanning trees in a superprism</a>, Discrete Math. Lett. 13 (2024) 66-73. See p. 66.

%H N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, <a href="http://projecteuclid.org/euclid.mjms/1312232716">Spiral knots</a>, Missouri J. of Math. Sci., 22 (2010).

%H M. DeLong, M. Russell, and J. Schrock, <a href="http://dx.doi.org/10.2140/involve.2015.8.361">Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m)</a>, Involve, Vol. 8 (2015), No. 3, 361-384.

%H N. Dowdall, T. Mattman, K. Meek, and P. Solis, <a href="http://arxiv.org/abs/0811.0044">On the Harary-Kauffman conjecture and turk's head knots</a>, arxiv 0811.0044 [math.GT], 2008.

%H A. A. Jagers, <a href="http://dx.doi.org/10.1080/00207168808803639">A note on the number of spanning trees in a prism graph</a>, Int. J. Comput. Math., Vol. 24, 1988 (Issue 2), pp. 151-154.

%H Seong Ju Kim, R. Stees, and L. Taalman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Stees/stees4.html">Sequences of Spiral Knot Determinants</a>, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.

%H D. E. Knuth, <a href="/A006235/a006235.pdf">Letter to N. J. A. Sloane, Oct. 1994</a>

%H Germain Kreweras, <a href="http://dx.doi.org/10.1016/0095-8956(78)90021-7">Complexité et circuits Eulériens dans les sommes tensorielles de graphes</a>, J. Combin. Theory, B 24 (1978), 202-212.

%H L. Oesper, <a href="http://educ.jmu.edu/~taalmala/OJUPKT/layla_thesis.pdf">p-Colorings of Weaving Knots</a>, Undergraduate Thesis, Pomona College, 2005.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Ryan Stees, <a href="https://commons.lib.jmu.edu/honors201019/84">Sequences of Spiral Knot Determinants</a>, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WebGraph.html">Web Graph</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-35,52,-35,10,-1).

%F a(n) = (1/2)*n*(-2 + (2 - sqrt(3))^n + (2 + Sqrt(3))^n) (Kreweras). - _Eric W. Weisstein_, Jul 15 2011

%F G.f.: x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.

%F a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>5.

%F a(n) = (n/2)*A129743(n). - Woong Kook and Seung Kyoon Shin (andrewk(AT)math.uri.edu), Jan 13 2009

%F a(k) = det(S(4,k,(1,-1,1))) = k*b(k)^2, where b(1)=1, b(2)=sqrt(6), b(k)=sqrt(6)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - _Ryan Stees_, Dec 14 2014

%F a(n) = n*(A001075(n) - 1). - _Eric W. Weisstein_, Mar 30 2017

%F E.g.f.: exp(x)*x*(exp(x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1). - _Stefano Spezia_, May 05 2024

%e For k=3, b(3)=sqrt(6)b(2)-b(1)=6-1=5, so det(S(4,3,(1,-1,1)))=3*5^2=75.

%p A006235:=(1+2*z-10*z**2+2*z**3+z**4)/(z-1)**2/(z**2-4*z+1)**2; # conjectured (correctly) by _Simon Plouffe_ in his 1992 dissertation

%t LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 1, 12, 75, 384, 1805}, 20]

%t Table[1/2 (-2 + (2 - Sqrt[3])^n + (2 + Sqrt[3])^n) n, {n, 0, 20}] // Expand

%t Table[n (ChebyshevT[n, 2] - 1), {n, 20}] (* _Eric W. Weisstein_, Mar 30 2017 *)

%o (PARI) a(n)=if(n<0,0,polcoeff(x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))

%Y Cf. A006237. Apart from a(2) coincides with A072373. A row or column of A173958.

%Y Cf. A001075, A129743.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Michael Somos_, Jul 19 2002

%E Minor edits by _N. J. A. Sloane_, May 27 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 06:07 EDT 2024. Contains 372980 sequences. (Running on oeis4.)