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- II1. 44. -

Donc

ou

v =

v' R x ; . )
v = v RR x, g (ITL. 20)
v=v'xR;,avec|v'!:n-2 !
J
cm
Notons Z l'ensemble des mots de Motzkin ''modifiés

dire qui satisfont (III.20) .

I1 est trivial de vérifier que

I11.19) .
Comme

I1I. 17

u < u=u R,
‘Wn+1 -
ouu=u'B,
ouu=u'x, avec |u'[=n-1.
. cm c
Soit -, ™ — ™
n+1 n-1
telle que
o < ()
Yoo s T o ) i VAR u=uuu_ ..
VETnt L2 n+l : 12
avec [ r1 5 -
Vg ,n-2 u o= w,
4 1 i
: =x., 3 =R, = = u = R
<”n—1 “'n “n+l n-1 ’
=R, - X, :; - u = B,
"n-1 Yy n+l n-1
o = R, =R, =X = U = X
L n-1 n Hn+l n-1

i (voir Lemme IIL11),
n

e

c'est-a-

est une bijection (Fin de preuve du lemme

on en déduit la Proposition
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Exemple n = 5.

) = (L2,4), ———

i'l<i<?3 o

ch(b)

Figure III. 12,

Ajoutons un pas a chaque chemin (voir Figure III.12) :
un pas Est pour ch(b) etun pas Nord pour ch(a) , de maniere a
pouvoir associer au couple formé. un mot de Motzkin coloré, par une

bijection " :

Soient ch(a) =

BURTLY LR s
1™ 2 n
Ch(b) = '.i)'l ‘C?‘Z' R ’n , et g ! (Ch(a)r Ch(b)) = u= Ul. .- Lln

oy =E et Ii = N = Ll1 = X,
w. = E et o= E 5 u =B

1 1 1
v: T N et .y o= N - u = R,

1 1 1
wl = N et 1) ’i_ = E = ul = X

L'ajout d'un pas aux chemins revient & concaténer un x a u . Soit donc

v=ux = VvV, VvV_V . Vv

12 3°° n+l °
Remarquons de plus, que les deux derniers pas de ch(b) sont toujours

verticaux. Ceci implique

x ou R,

<
"

v = x ou R
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(
g = n,
l<a1<a2< <a€_1<a )
1 b, <«
< 1<b2<....<ba_1.
(II1. 19) < ajs by pour delle-l73,
1 <aisn—2 pour i< [1,2-17,
a < n ,
4

Kl <bi s n-1pour 121 ¢-17.

LEMME TIII. 19, -

L'ensemble des couples de suites vérifiant (III.19) est en bijection

avec l'ensemble des mots de Motzkin colorés & n-1 lettres .

Preuve :

On utilise la bijection | ' définie entre les couples de suites vérifiant

(IIL. 10) et (IIL. 11) et certains couples de chemins du plan ne se coupant pas.

Rappelons cette bijection ' :

Soient (a.) et (b,)

1" 1 <i 5

. le couple de suites., On associe
Z i"1<i <y g

A
|

!
a

a chacune des suites , un chemin dans le plan . Soit ch(a) = 4 CPTRRE
: n

le chemin associé a la suite (a ), il est tel que
i

= [Ui = E (paS ESt) ,

PicllLnd. ¥jellelifa, <o =N (pas Noxd).

On définit de m@me ch(b) .
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Abstract

In this paper a way of picturing the composition,
F(G(x)) of exponential generating functions is discussed.
The speciaf case where F(x) 1is the exponential function
has been discussed before many times. See for instance
the survey article by Stanley [12], the monograph by Moon
[6] and Riordan's books [9],[10] and the references there.
The simplicity involved however seems to get lost in such
complications as Bell polynomials and Faa di Bruno's formula.
The purpose there is to discuss the method and to give
a small selection of results that can then be obtained.
Some of the results are well known but some such as the
combinatorial interpetations of the Hermite and Laguerre
-3 polynomials are of independent interest.

[S] E. Kohler, Zyklische Quadrupelsysteme, Abh. Math. Sem. Hamburg,
48 (1979), 1-24.

[6] c.C. Lindner, A. Rosa, Steiner quadruple systems - a survey,
Disc. Math. 22 (1978), 147-181.

[7] K.T. Phelps, An infinite class of cyclic Steiner quadruple systems
(to appear).

We have only begun to list the results that can be
viewed this way but hope that many readers will find this

Department of Mathematical Sciences pictorial method personally useful.

McMaster University

Hamilton, Ontario
§1. Some standard generating functions and what they look Like.

If

Canada
a.,a,,a,,a,,... 1s a sequence then the formal series
071723 ) 3

® n

A(x) =a, +ax+a, +a + . = I a 327 is the

X
0 1 2 2! 3307 7 2h Tnon!

exponential generating function (or E.G.F.) for this sequence. In this
paper a will be the number of ways that a set with n elements can
be arranged according to some conditions. This is illustrated by the
following eight examples. Proofs can be found in [12], or to some
extent in [2] or [6].

(A) Just count each set once. This gives the E.G.F.

2 3 4

ET +1- %T +1-

In this case we are putting no structure on the set.

X

1+1-x+1- + ... = e

X
4

(B) There are n! permutations of a set with n elements. This

yields the E.G.F.
2 3 4

+ 3! +40 2o+ = = P(x).

1+1!x+ 2! 3 =
Loxt 2 3T et ST o x

27
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There rn alternate view that is helpful. Each permutation can
be written dC . product of disjoint cycles in essentially unique way.
These cycles partition the n-set. Call each subset involved in the
partition a block. The conditions could be specified for the block
instead of for the whole set. In this exémple we could specify that
each block consists of elements of some cyclic permutation.
(C) Rooted trees.

2 3

X 2. x ©  p-1 X"
Ix + 2- 37 + 3 Tt = Iom :—!=T(x)
It is well knownthat T(x) = xel ®),
(D) n-cycles. (There is only one block and it is an n-cycle.)
2 3 4
X x
X+ 1 5r+ 20 37+ 30 4 = - In(l - %) = N(x)

(E) Idempotent functions with a single root
2 3

x
1 x + 2- o7+ 3 %T + ... = xet = I(x)

(F) All functions from [n] to [n].
on [n])

(i.e. all functional digraphs

2 3
2 x 3 ©
X+ ...= f n

T+ 3 3 n X
! 3! n=0

1+1-x+2 |=A(x)

=]

(G) Let S be an n-set. In how many ways can S be partitioned into

subsets where each subset consists of one or two elements? Let

the number of such possiblilities be s :
n

© n
X
Eo S, oT be the exponential generating function. This is the
n

number of ways that n subscribers of a telephone exchange can be
connected since if two people are talking on the telephone they
make up a subset where if someone is not talking on the telephone
that person comprises a singleton subset.

This function also enumerates the number of elements of order
1 or 2 in the symmetric group Sn and the number of sym-

metric permutation matrices.

(H) The derangements of n elements. Every block is an n-cycle

where n > 2.

D(x) = —% 7%

1 - x

Typical pictures are given

132

" (A) (B)
o
k| © 0o @

@%‘
&

@@ 08
2

>
&

~kth term f

2 : .
and let S(x) = exp(x*%) '§ 3

§2. Composition of Functions.

The next idea we want to discuss is the composition of generating

functions.
See [2], [8], [91 and [10] for a more formal and detailed discussion.

Let F(x) and G(x) be exponential generating functions. If
xn xn .
= %= = = h £
F(x) nEO fn o and G(x) nél gn o7 then what is the meaning o
F(G(x)) as an exponential function? More specifically, what does the

Think of k vertices arranged in

k
igiﬁ%24' represent?

k
one of the configurations enumerated by fk.

to circle the contents of which are enumerated by G(x).

Let us consider G(x)2 in some detail.

2 © xn @ xm © 2 0 XE
)" =(C T g (L g =7)= 1 I() e 8, v -
1=0 n n. HE0 m m. 2=0 n=0 n n “%-n 2.

So to account for & vertices we put n vertices in one group, £
in the other. There are then g, vways to arrange the first group,

8,_, ways for the second. However our calling one group the first

and the other the second is arbitrary so (G(x))2/2! is the term we

want.

k
Similarly ig&f%l— will be the term when k vertices are

replaced by configurations each enumerated by G(x).

To illustrate this consider the following:

133

The basic idea is very simple if illustrated by pictures.

Then enlarge each vertex

n
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EXAMPLE‘FH

2 2 3 3 4 xa
What is the interpretation of A(x) = 1+ x + 2 %T‘+ 3 ;, + 4 ™ + .
1 2 3 4
P(T(x)) = X 2 x 3 x
1 - T(x) =l (x+257+3 FrH4T Tt )
2 3
W t
e start by considering a typical permutation + (x+ 2 %T + 32 %T + . .)2
x2 3
(1) 0 - +(X+2f+ )
+ (x + ...)a
We then think of From this we can see that
- - -1
. . n n, 1 n, 1 nk

apeon)™ T2

n,>1
Fia

o e

Since T(x) represents a rooted tree we can go another step and
thinking of each T(x)

where the sum is taken over all compositions of n.

EXAMPLE 2.

. i are there? We art with
as some typical rooted tree we can then How many idempotent functions on [n] et e start wit

identify the root to the vertex in (I) . ‘

to get the following picutre ::

RSl

We then recognize this as the picture of the typical funtional
digraph so

(1) <« > %

(I1) Replace each vertex by xe™ -

© @&
® @ ©

Again each xe® represents a rooted connected idempotent so we
can identify the root with our original vertex in (I) to obtain the

picture we want

'_ ?:,3 NS /

, xe . . . :
This has e as its exponential generating function which is

1

A(x) = ———
1 - T(x)

what we wanted.

124
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i

T g

. ._;.‘ the permutation part. Let b: be the number of elemen( S

r’ 2 last two examples yielded well known results but the -
metho

© _pply much more generally. fwhose permutation part satisfies the given condition. Let

EXAMPLE 3.

X © n
')*(x) = I b: ET . What is the relationship of B*(x) and B(x)?

What is the exponential generating function for funtional n=1 ’

such that each element either is part of a cycle or at leﬁgth at

-Ethe answer is simple.
1 from a cycle? 5 H

;;THEOREM: With this notation
B*(z) = B(T(x))

The picture is

;?.Proof_ The proof merely generalizes example 1 since _i_%_;:_ is

2. the E.G.F. for all permutations (i.e. with no additional condition
‘fron the permutation part). Since we can attach a tree to any of the

; elements in the permutation part the appropriate E.G.F. 1is B(T(x)).

The number of labelled rooted forests with k specified roots

is knn_k—l and proofs can be found in [2], [3] and [7]. Thus
F T on n-k-1 n
E b: = I (k)bkkn . We choose the k points [in (k) ways],
4 k=1 .

which can be built up by starting with (I)

Q O = w}\ﬁ@

and adding xeX

—k-
arrange them [in bk ways] and attach the rooted trees [in kn" 1

E;;ways].

B¢ EXAMPLE 4.
: If we let n, be the number of k-cycles on k vertices as in

k
so the answer i (D), then

N(x) = - 1n(1l - x) and
The next theorem is an important one in examining etric N* (x) In(l - T(x))
. * T -
semigroup of all functions from [n] to itself. Call this semi- m k-1
group Sn . It is easy to see that any element of this semigroup Expanding would yield n; T (k) (kom Dtk and 1

k=0
acts as apermutation on some k n*m

2

elements and maps the remaining n b

m > 3 the number of unicyclic simple graphs on m points is
elements eventually to the first k. -

We call the first k elementi

the permutation part. EXAMPLE 5.

We have some condition that we want on the permutation part. One presentation of the Fibonacci numbers is as the number of

Possibilities include, a)

no cycles of lemgth 1 b) all cycles compositions of n into odd parts. For instance 6 has the following

the permutation part is even (in the alternatingh

group). If there are bk arrangements on -
xk

_— (usually we would have B(x) in closed form).

have odd length «c) eight compositions.

k elements then let 5+1,1+5,3+3,3+1+1+1,1+3+1+1,1+1+3+1,

@
+
B(x) = I b 1+1+1+3, 1+1+1+1+1+1.
n=0 For sets we could ask for the number of chains of subsets
We now want to consider the whole of S where the permutation
n

part satisfies the given condition. Geometrically we now attach tr&

136 137



S, = ¢(1c52cs3c...cs =

Kk S where |S -8

1 i-ll is odd

i=1,2,...,k and |S] =n. Call this number fn' It is easy to see
~ ~ ~ ~
that F1 =1, F2 = 2, F3 =7, and FA = 32. What is
z Fn a7 First arrange a set with k elements in a row and
n=0 -

allowing the empty set this has E.G.F.

x2 x3 1
) 1 =
1+x+2—2,+33,+ —

This picture is @ @ @ @

Then replacé each vertex by G(x) =

Tho
= _.n
(¢ F X
g=g B D
1232 ET-+ 9787 =+ ...
If instead we had required ISi - Si - 1| > 2 we would have
G(x) =e* -1 -x and E.G.F. l L 7 él )5} (j
1-("-1-% |2-x-¢ ?ﬂlg@

for another similar analogue of the

bonacci numbers. See Gross [5]

where this situation arises in relation to preferential arrangements.

Several remarks are in order here. First when considering A(B(x))

B(x) Second if

the power series for
C(x) enumerates some unrcoted configurations then x %; cx)

merates the rooted version of the same configurations. The rooted

should have no constant term.

enu-

version has a root which may be attached to the vertex in the diagram

of part I.

§3. Combinatorial polynomials.

There is a simple way of pushing these illustrations one step

further. When we have state IT

138

(¢9)
@

(@

imagine each circle to be colored one of y This yields the

colors.

following picture:

k k
(G(xiz and the new composite function

The kth term becomes fk
is F(yG(x)).

indicating the number of blocks or components involved. Two familiar

examples of this are:

EXAMPLE 6.

Let each block consist of one element that can be colored y ways.

This yields

yx ® ni"
e = Iy o
n=0 :
EXAMPLE 7.
Let the set N be broken up into blocks and let each block be
colored one of y colors. A single block is then enumerated by
2 3
X
y(x+ };. ) =yt - 1)

and the exponential generating function is

oY (ex—l)

139



However [n] can be partitioned into k subsets in S(n,k)
L]

ways where S(n,k) 1is a Stirling number of the second kind. Th

x ®
e -1 . o
RAS o1+ o oSGy X
n=0 k=0 ne
Letting y =1 yields the familiar
x © n
-1
e T =1+ B X
n=0 )
n .
where B(n) = I S{(n,k) 1s the nth Bell number, the total number of :
k=1 :
N

blocks on N.
The next example provides a connection with Hermite polynomials,
EXAMPLE 8.

Let [n] be partitioned so that each block consists of 1 or i
3

elements. Those with one element can be colored 2y ways while those T

with two elements can be oriented towards either vertex. A picture
might look like

On one hand the exponential generating function is

2
b3
eZyx + 2 2

On the other hand the coefficient polynomial for xn/n! is

-2k 2k 1
GO et h
k50 2k y G,2,2,...,2 &' 2
pick 2k element each singleton pair the orient
for the pairs can be colored elements each pair
2y ways
which simplifies to
«an

(5

2
. n! (ZY)n_Zk
k=0 (n - 2k)! k:

. For n =5 this yields

329° + 160y> + 120y.

This is essentially the HS(Y), the fifth Hermite polynomial except
that the signs do not alternate. Indeed this is what is happening and
replacing x by it and y by -iz yields

n

exp(2zt - tz) = I H_ (2) ET
n n!
n=0

which is the standard generating function for the Hermite polynomials.

Thus we have a very pleasant, down to earth, combinatorial view of the
Hermite polynomials. A recent paper of Foata's [4] takes this idea
one step further and proves Mehler's identity for Hermite polynomials

. 1

2

1+zH(a)H(b)37=(1—4u2) exp|
0>l n n n! 1 - 4u?

4abu - 4(a2 + b2) u2]

§4. Linear trees and the Laguerre polynomials.
Define a linear tree to be a rooted tree where only the root can

have degree greater than two. The picture 1s

Recall that the E.G.F. for a connected idempotent graph is xe™

. X .
where x gives the root and e the other vertices

<—> @

141



Replacing each of the other vertices by a rooted linear graph vith

e

X
E.G.F. -]: gives the picture for linear trees and thus the E.G.F, is
x

G(x) = xel—x = x exp(I—;) \3

The first few values. are

QQV 1 2 9 52 365 3006 28357 301064

and the recursion is (n - l)g (2n - 3n)g 1 + (n -n)(3 - n)g 2

s omitted then we obtain
x2 x3 4 x5 6
-G*(x) = e =1+x+3 'l + 13 §T-+ 73 4, + 501 5T + 4051 X e +...

which 1s'§!%!ﬁ$i§ﬁ§§&ﬁ%ﬁhé‘v119o ‘where 1t is listed as forests of
greatest height. It is also true that

gk = ngl. o (E:l
n kel k! k-1
n: ,n-1
The numbers B (E:I) are called the (signless) Lah numbers. If

each branch out of the root is colored one of z colors, them we have

and the polynomials in z turn out to be Laguerre polynomials with

n! ,n-
L*n(—z) = I X (k—l) 2z . This striking combinatorial interpretation
k=1 ™°

has been discussed before in Riordan [10] and by Mullin and Rota [8].

As striking as this is, it is not fully satisfactory since it is the
@ = -1 version of the Laguerre polynomials and not the standard
version. In a later paper Rota, Kahaner, and 0dlyzko [11] do consider
complete families of Hermite and Laguerre polynomials from the view

point of operators.

The generating function for the standard Laguerre polynomials is

-zx ©
IR SR o L (z)x". Thus
1-x -
=
zx <Y n
S PUR A A S I
1-x n n
n=0

To interpret the polynomials n! Ln(-z) start with the rooted idem-
potent E.G.F. xe™. Replace the root given by x by a rooted linear
tree which is'allowed to be empty so that 1%; is the E.G.F. As
before the remaining points given by e* are each replaced by 2z

colored rooted linear nonempty trees.

&———possibly empty

Thus n! Ln(-z) gives the number of such arrangements on a total of

n vertices. This characterization can be used to prove vaious iden-
tities involving Laguerre polynomials. In fact the general Laguerre
polynomials of index o can be given a similar interpretation. Using

the notation of Abramovitz-Stegun [1] one obtains

1 -Xz z (o)
————— exp (/) = L (x)
(l_y)a+l 1-x =0 "

We illustrate for o = 3 where we have a + 1 = 4 linear trees

coming in from the bottom



"Ei[ll

J;lzl
e [3]

— . [4]

each of ihese 4
possibly empty :

X5

Among the identities that can be proven using this combinatorial 151
s

method are the following as given in Abramowitz-Stegun [1]
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