The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005802 Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).
(Formerly M1666)
37

%I M1666 #157 Jun 27 2023 11:01:23

%S 1,1,2,6,23,103,513,2761,15767,94359,586590,3763290,24792705,

%T 167078577,1148208090,8026793118,56963722223,409687815151,

%U 2981863943718,21937062144834,162958355218089,1221225517285209,9225729232653663,70209849031116183,537935616492552297

%N Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).

%C Also the dimension of SL(3)-invariants in V^n tensor (V^*)^n, where V is the standard 3-dimensional representation of SL(3) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

%C Also the number of doubly-alternating permutations of length 2n with no four-term increasing subsequence (i.e., 1234-avoiding doubly-alternating permutations). The doubly-alternating permutations (counted by sequence A007999) are those permutations w such that both w and w^(-1) have descent set {2, 4, 6, ...}. - _Joel B. Lewis_, May 21 2009

%C Any permutation without an increasing subsequence of length 4 has a decreasing subsequence of length >= n/3, where n is the length of the sequence, by the Erdős-Szekeres theorem. - _Charles R Greathouse IV_, Sep 26 2012

%C Also the number of permutations of length n simultaneously avoiding patterns 1324 and 3416725 (or 1324 and 3612745). - _Alexander Burstein_, Jan 31 2014

%C For any integer n > 0, we have (n+2)^2*a(n) - n^2*a(n-1} = 4*A086618(n). - _Zhi-Wei Sun_, Nov 16 2017

%D Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.

%D S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(e), p. 453.

%H Alois P. Heinz, <a href="/A005802/b005802.txt">Table of n, a(n) for n = 0..1060</a>

%H Michael Albert and Mireille Bousquet-Mélou, <a href="https://arxiv.org/abs/1312.4487">Permutations sortable by two stacks in parallel and quarter plane walks</a>, arXiv:1312.4487 [math.CO], 2014-2015.

%H Michael Albert and Mireille Bousquet-Mélou, <a href="https://doi.org/10.1016/j.ejc.2014.08.024">Permutations sortable by two stacks in parallel and quarter plane walks</a>, European Journal of Combinatorics 43 (2015), 131-164.

%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.

%H A. Burstein and J. Pantone, <a href="https://arxiv.org/abs/1402.3842">Two examples of unbalanced Wilf-equivalence</a>, arXiv preprint arXiv:1402.3842 [math.CO], 2014.

%H CombOS - Combinatorial Object Server, <a href="http://combos.org/jump">Generate pattern-avoiding permutations</a>

%H Andrew R. Conway and Anthony J. Guttmann, <a href="https://doi.org/10.1016/j.aam.2014.12.004">On 1324-avoiding permutations</a>, Advances in Applied Mathematics, Volume 64, March 2015, p. 50-69.

%H Andrew R. Conway and Anthony J. Guttmann, <a href="https://arxiv.org/abs/2306.12682">Counting occurrences of patterns in permutations</a>, arXiv:2306.12682 [math.CO], 2023. See p. 18.

%H Tom Denton, <a href="https://arxiv.org/abs/1303.3767">Algebraic and Affine Pattern Avoidance</a>, arXiv preprint arXiv:1303.3767 [math.CO], 2013.

%H Eric S. Egge, <a href="/A000139/a000139.pdf">Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics</a>, MAA Focus, August/September 2015, pp. 33-34. [Annotated scanned copy]

%H Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, <a href="https://arxiv.org/abs/1504.02513">The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r</a>, arXiv:1504.02513 [math.CO], 2015.

%H Steven Finch, <a href="https://web.archive.org/web/20160511035941/http://www.people.fas.harvard.edu/~sfinch/csolve/av.pdf">Pattern-Avoiding Permutations</a> [Cached copy at the Wayback Machine]

%H Steven Finch, <a href="/A240885/a240885.pdf">Pattern-Avoiding Permutations</a> [Cached copy, with permission]

%H A. L. L. Gao, S. Kitaev, and P. B. Zhang, <a href="https://arxiv.org/abs/1605.05490">On pattern avoiding indecomposable permutations</a>, arXiv:1605.05490 [math.CO], 2016.

%H Ira M. Gessel, <a href="https://doi.org/10.1016/0097-3165(90)90060-A">Symmetric functions and P-recursiveness</a>, J. Combin. Theory A 53 (1990), 257-285.

%H O. Guibert and E. Pergola, <a href="https://doi.org/10.1016/S0012-365X(00)00139-4">Enumeration of vexillary involutions which are equal to their mirror/complement</a>, Discrete Math., Vol. 224 (2000), pp. 281-287.

%H Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, <a href="https://arxiv.org/abs/1906.06069">Combinatorial generation via permutation languages. I. Fundamentals</a>, arXiv:1906.06069 [cs.DM], 2019.

%H Eric Marberg, <a href="https://arxiv.org/abs/1203.5738">Crossings and nestings in colored set partitions</a>, arXiv preprint arXiv:1203.5738 [math.CO], 2012.

%H J. Noonan and D. Zeilberger, <a href="http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/forbid.pdf">The Enumeration of Permutations With A Prescribed Number of "Forbidden" Patterns</a>.

%H J. Noonan and D. Zeilberger, <a href="https://doi.org/10.1006/aama.1996.0016">The Enumeration of Permutations With A Prescribed Number of "Forbidden" Patterns</a>, Advances in Applied Mathematics, Vol. 17, 1996, pp. 381-407.

%H J. Noonan and D. Zeilberger, <a href="https://arxiv.org/abs/math/9808080">The Enumeration of Permutations With a Prescribed Number of "Forbidden" Patterns</a>, arXiv:math/9808080 [math.CO], 1998.

%H Erik Ouchterlony, <a href="http://garsia.math.yorku.ca/fpsac06/papers/83.pdf">Pattern avoiding doubly alternating permutations</a>

%H Nathaniel Shar, <a href="https://doi.org/10.7282/T3BK1FKF">Experimental methods in permutation patterns and bijective proof</a>, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.

%H Anders Bjorner and Richard P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers/comb.pdf">A combinatorial miscellany</a>

%H R. P. Stanley, <a href="https://doi.org/10.1090/S0273-0979-02-00966-7">Recent Progress in Algebraic Combinatorics</a>, Bull. Amer. Math. Soc., 40 (2003), 55-68.

%F a(n) = 2 * Sum_{k=0..n} binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2 + 2*k+1 - n - 2*k*n)/((k+1)^2 * (k+2) * (n-k+1)).

%F (4*n^2 - 2*n + 1)*(n + 2)^2*(n + 1)^2*a(n) = (44*n^3 - 14*n^2 - 11*n + 8)*n*(n + 1)^2*a(n - 1) - (76*n^4 + 42*n^3 - 49*n^2 - 24*n + 24)*(n - 1)^2*a(n - 2) + 9*(4*n^2 + 6*n + 3)*(n - 1)^2*(n - 2)^2*a(n - 3). - _Vladeta Jovovic_, Jul 16 2004

%F a(0) = 1, a(1) = 1, (n^2 + 8*n + 16)*a(n + 2) = (10*n^2 + 42*n + 41) a(n + 1) - (9*n^2 + 18*n + 9) a(n). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

%F a(n) = ((18*n+45)*A002893(n) - (7+2*n)*A002893(n+1)) / (6*(n+2)^2). - _Mark van Hoeij_, Jul 02 2010

%F G.f.: (1+5*x-(1-9*x)^(3/4)*(1-x)^(1/4)*hypergeom([-1/4, 3/4],[1],64*x/((x-1)*(1-9*x)^3)))/(6*x^2). - _Mark van Hoeij_, Oct 25 2011

%F a(n) ~ 3^(2*n+9/2)/(16*Pi*n^4). - _Vaclav Kotesovec_, Jul 29 2013

%F a(n) = Sum_{k=0..n} binomial(2k,k)*binomial(n+1,k+1)*binomial(n+2,k+1)/((n+1)^2*(n+2)). [Conway and Guttmann, Adv. Appl. Math. 64 (2015) 50]

%F a(n) = hypergeom([1/2, -1 - n, -n], [2, 2], 4) / (n+1). - _Vaclav Kotesovec_, Jun 07 2021

%p a:= n-> 2*add(binomial(2*k,k)*(binomial(n,k))^2*(3*k^2+2*k+1-n-2*k*n)/ (k+1)^2/(k+2)/(n-k+1),k=0..n);

%p A005802:=rsolve({a(0) = 1, a(1) = 1, (n^2 + 8*n + 16)*a(n + 2) = (10*n^2 + 42*n + 41)*a(n + 1) - (9*n^2 + 18*n + 9)*a(n)},a(n),makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

%t a[n_] := 2Sum[Binomial[2k, k]Binomial[n, k]^2(3k^2+2k+1-n-2k*n)/((k+1)^2(k+2)(n-k+1)), {k, 0, n}]

%t (* Second program:*)

%t a[0] = a[1] = 1; a[n_] := a[n] = ((10*n^2+2*n-3)*a[n-1] + (-9*n^2+18*n-9)* a[n-2])/(n+2)^2; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Feb 20 2017 *)

%t Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4] / (n+1), {n, 0, 25}] (* _Vaclav Kotesovec_, Jun 07 2021 *)

%o (PARI) a(n)=2*sum(k=0,n,binomial(2*k,k)*binomial(n,k)^2*(3*k^2+2*k+1-n-2*k*n)/(k+1)^2/(k+2)/(n-k+1)) \\ _Charles R Greathouse IV_, Sep 26 2012

%Y A column of A047888. See also A224318, A223034, A223905.

%Y Column k=3 of A214015.

%Y A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).

%K nonn,nice

%O 0,3

%A _N. J. A. Sloane_, _Simon Plouffe_

%E Additional comments from _Emeric Deutsch_, Dec 06 2000

%E More terms from _Naohiro Nomoto_, Jun 18 2001

%E Edited by _Dean Hickerson_, Dec 10 2002

%E More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 22:04 EDT 2024. Contains 373102 sequences. (Running on oeis4.)