The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005709 a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.
(Formerly M0492)
32

%I M0492 #108 May 25 2023 07:02:47

%S 1,1,1,1,1,1,1,2,3,4,5,6,7,8,10,13,17,22,28,35,43,53,66,83,105,133,

%T 168,211,264,330,413,518,651,819,1030,1294,1624,2037,2555,3206,4025,

%U 5055,6349,7973,10010,12565,15771,19796,24851

%N a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.

%C This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.

%C For n >= 7, a(n-7) is the number of compositions of n in which each part is >=7. - _Milan Janjic_, Jun 28 2010

%C Number of compositions of n into parts 1 and 7. - _Joerg Arndt_, Jun 24 2011

%C a(n+6) is the number of binary words of length n having at least 6 zeros between every two successive ones. - _Milan Janjic_, Feb 09 2015

%C Number of tilings of a 7 X n rectangle with 7 X 1 heptominoes. - _M. Poyraz Torcuk_, Feb 26 2022

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A005709/b005709.txt">Table of n, a(n) for n=0..500</a>

%H Mudit Aggarwal and Samrith Ram, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Ram/ram3.html">Generating Functions for Straight Polyomino Tilings of Narrow Rectangles</a>, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.

%H Michael A. Allen, <a href="https://arxiv.org/abs/2209.01377">On a Two-Parameter Family of Generalizations of Pascal's Triangle</a>, arXiv:2209.01377 [math.CO], 2022.

%H D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3, Example 10.

%H P. Chinn and S. Heubach, <a href="/A005710/a005710.pdf">(1, k)-compositions</a>, Congr. Numer. 164 (2003), 183-194. [Local copy]

%H E. Di Cera and Y. Kong, <a href="https://doi.org/10.1016/S0301-4622(96)02178-3">Theory of multivalent binding in one and two-dimensional lattices</a>, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.

%H I. M. Gessel and Ji Li, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Gessel/gessel6.html">Compositions and Fibonacci identities</a>, J. Int. Seq. 16 (2013) 13.4.5.

%H R. K. Guy, <a href="/A004001/a004001_2.pdf">Letter to N. J. A. Sloane with attachment, 1988</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=380">Encyclopedia of Combinatorial Structures 380</a>

%H R. J. Mathar, <a href="http://arxiv.org/abs/1609.03964">Tiling n x m rectangles with 1 x 1 and s x s squares</a>, arXiv:1609.03964 [math.CO], 2016, Section 4.6.

%H Augustine O. Munagi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Munagi/munagi10.html">Integer Compositions and Higher-Order Conjugation</a>, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.

%H David Newman, <a href="https://www.jstor.org/stable/2322766">Problem E3274</a>, Amer. Math. Monthly, 95 (1988), 555.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1).

%F G.f.: 1/(1-x-x^7). - _Simon Plouffe_ in his 1992 dissertation.

%F For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k)=0, otherwise. Then, for n >= 1, a(n) = Sum_{k=1..n} c(n,k). - _Milan Janjic_, Dec 09 2011

%F Apparently a(n) = hypergeometric([1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], [1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], -7^7/6^6) for n >= 36. - _Peter Luschny_, Sep 19 2014

%p A005709 := proc(n) option remember; if n <=6 then 1; else A005709(n-1)+A005709(n-7); fi; end;

%p with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 6)}, unlabeled]: seq(count(SeqSetU, size=j), j=7..55); # _Zerinvary Lajos_, Oct 10 2006

%p ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 6)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=6..54); # _Zerinvary Lajos_, Mar 26 2008

%p M:= Matrix(7, (i,j)-> if j=1 and member(i,[1,7]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..50); # _Alois P. Heinz_, Jul 27 2008

%t f[ n_Integer ] := f[ n ]=If[ n>7, f[ n-1 ]+f[ n-7 ], 1 ]

%t Table[Sum[Binomial[n-6*i, i], {i, 0, n/7}], {n, 0, 45}] (* _Adi Dani_, Jun 25 2011 *)

%t LinearRecurrence[{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 80] (* _Vladimir Joseph Stephan Orlovsky_, Feb 16 2012 *)

%o (PARI) x='x+O('x^66); Vec(1/(1-(x+x^7))) /* _Joerg Arndt_, Jun 25 2011 */

%Y Cf. A000045, A000079, A000930, A003269, A003520, A005708, A005710, A005711.

%K nonn,easy

%O 0,8

%A _N. J. A. Sloane_

%E Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)