The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005558 a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
(Formerly M2598)
12

%I M2598 #160 May 10 2024 08:50:58

%S 1,1,3,6,20,50,175,490,1764,5292,19404,60984,226512,736164,2760615,

%T 9202050,34763300,118195220,449141836,1551580888,5924217936,

%U 20734762776,79483257308,281248448936,1081724803600,3863302870000,14901311070000,53644719852000

%N a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.

%C Number of n-step walks that start at the origin, constrained to stay in the first octant (0 <= y <= x). (Conjectured) - _Benjamin Phillabaum_, Mar 11 2011, corrected by _Robert Israel_, Oct 07 2015

%C For n >= 1, a(n-1) is the number of Dyck Paths with semilength n having floor((n+2)/2) U's in odd numbered positions. Example: (U is in odd numbered position and u is in even numbered position) Dyck path with n=5, floor ((5+2)/2)=3: UuddUuUddd. - _Roger Ford_, May 27 2017

%C The ratio of the number of n-step walks on the octant with an equal number of North steps and South steps to the total number of n-step walks on the octant is A005817(n)/a(n). For the reduced ratio, if n is divisible by 4 or n-1 is divisible by 4 the ratio is 1:floor(n/4)+1 and for all other values of n the ratio is 2:floor(n/2)+2. Example n = 4: A005817(4) = 10; EEEE, EEEW, EEWE, EWEE, EWEW, EEWW, ENSE, ENES, ENSW, EENS; a(4) = 20; 10:20 reduces to 1:2. - _Roger Ford_, Nov 04 2019

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005558/b005558.txt">Table of n, a(n) for n = 0..1000</a>

%H A. Bostan, <a href="https://www-apr.lip6.fr/sem-comb-slides/IHP-bostan.pdf">Computer Algebra for Lattice Path Combinatorics</a>, Slides for Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.

%H Alin Bostan, <a href="https://specfun.inria.fr/bostan/HDR.pdf">Calcul Formel pour la Combinatoire des Marches</a> [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.

%H Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, <a href="https://doi.org/10.1016/j.ejc.2016.10.010">Hypergeometric expressions for generating functions of walks with small steps in the quarter plane</a>, Eur. J. Comb. 61, 242-275 (2017)

%H Sergi Elizalde, <a href="https://arxiv.org/abs/2002.12874">The degree of symmetry of lattice paths</a>, arXiv:2002.12874 [math.CO], 2020.

%H R. K. Guy, <a href="/A005555/a005555.pdf">Letter to N. J. A. Sloane, May 1990</a>

%H R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, Sandsteps and Pascal Pyramids</a>, J. Integer Seqs., Vol. 3 (2000), #00.1.6. See Column 1 of Figure 5.

%H Heinrich Niederhausen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Niederhausen/niederhausen10.html">A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.

%F a(n) = C(n+1, ceiling(n/2))*C(n, floor(n/2)) - C(n+1, ceiling((n-1)/2))*C(n, floor((n-1)/2)). - _Paul D. Hanna_, Apr 16 2004

%F G.f.: (1/(4x^2))*((16*x^2-1)*(hypergeom([1/2, 1/2],[1],16*x^2)+2*x*(4*x-1)*hypergeom([3/2, 3/2],[2],16*x^2))-2*x+1). - _Mark van Hoeij_, Oct 13 2009

%F E.g.f (conjectured): BesselI(1,2*x)*(BesselI(0,2*x)+BesselI(1,2*x))/x. - _Benjamin Phillabaum_, Feb 25 2011

%F Conjecture: (2*n+1)*(n+3)*(n+2)*a(n) - 4*(2*n^2+4*n+3)*a(n-1) - 16*n*(2*n+3)*(n-1)*a(n-2) = 0. - _R. J. Mathar_, Apr 02 2017

%F Conjecture: (n+3)*(n+2)*a(n) - 4*(n^2+3*n+1)*a(n-1) + 16*(-n^2+n+1)*a(n-2) + 64*(n-1)*(n-2)*a(n-3) = 0. - _R. J. Mathar_, Apr 02 2017

%F a(n) = Sum_{k=0..floor(n/2)} n!/(k!*k!*(floor(n/2)-k)!*(floor((n+1)/2)-k)!*(k+1)) (conjectured). - _Roger Ford_, Aug 04 2017

%F a(n) = A000108(floor((n+1)/2))*A000108(floor(n/2))*(2*(floor(n/2))+1). - _Roger Ford_, Nov 15 2019

%F a(n) = Product_{k=3..n} (4*floor((k-1)/2) + 2) / (floor((k+2)/2)). - _Roger Ford_, Apr 29 2024

%p A:= proc(n,x,y) option remember;

%p local j, xpyp, xp,yp, res;

%p xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]];

%p res:= 0;

%p for j from 1 to 4 do

%p xp:= xpyp[j,1];

%p yp:= xpyp[j,2];

%p if xp < 0 or xp > yp or xp + yp > n then next fi;

%p res:= res + procname(n-1,xp,yp)

%p od;

%p return res

%p end proc:

%p A(0,0,0) := 1:

%p seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # _Robert Israel_, Oct 07 2015

%t a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* _Jean-François Alcover_, Mar 13 2014 *)

%o (PARI) a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))

%o (Magma) [Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // _Vincenzo Librandi_, Sep 30 2015

%o (Python)

%o from sympy import ceiling as c, binomial

%o def a(n):

%o return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)

%o print([a(n) for n in range(51)]) # _Indranil Ghosh_, Jul 02 2017

%Y See A138350 for a signed version.

%Y Bisections are A000891 and A000888/2.

%Y Cf. A005559, A005560, A005561, A005562, A093768.

%Y Cf. A000108, A005817.

%K nonn,walk

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 23:22 EDT 2024. Contains 373280 sequences. (Running on oeis4.)