The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005418 Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.
(Formerly M0771)
81

%I M0771 #310 Feb 21 2024 08:26:27

%S 1,2,3,6,10,20,36,72,136,272,528,1056,2080,4160,8256,16512,32896,

%T 65792,131328,262656,524800,1049600,2098176,4196352,8390656,16781312,

%U 33558528,67117056,134225920,268451840,536887296,1073774592,2147516416,4295032832

%N Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.

%C Equivalently, walks on triangle, visiting n+2 vertices, so length n+1, n "corners"; the symmetry group is S3, reversing a walk does not count as different. Walks are not self-avoiding. - _Colin Mallows_

%C Slavik V. Jablan observes that this is also the number of rational knots and links with n+2 crossings (cf. A018240). See reference. [Corrected by _Andrey Zabolotskiy_, Jun 18 2020]

%C Number of bit strings of length (n-1), not counting strings which are the end-for-end reversal or the 0-for-1 reversal of each other as different. - Carl Witty (cwitty(AT)newtonlabs.com), Oct 27 2001

%C The formula given in page 1095 of the Balasubramanian reference can be used to derive this sequence. - _Parthasarathy Nambi_, May 14 2007

%C Also number of compositions of n up to direction, where a composition is considered equivalent to its reversal, see example. - _Franklin T. Adams-Watters_, Oct 24 2009

%C Number of normally non-isomorphic realizations of the associahedron of type I starting with dimension 2 in Ceballos et al. - _Tom Copeland_, Oct 19 2011

%C Number of fibonacenes with n+2 hexagons. See the Balaban and the Dobrynin references. - _Emeric Deutsch_, Apr 21 2013

%C From the point of view of binary grids, it is a (1,n)-rectangular grid. A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11. - _Yosu Yurramendi_, May 19 2013

%C Number of n-vertex difference graphs (bipartite 2K_2-free graphs) [Peled & Sun, Thm. 9]. - _Falk Hüffner_, Jan 10 2016

%C The offset should be 0, since the first row of A034851 is row 0. The name would then be: "Number of n bead...". - _Daniel Forgues_, Jul 26 2018

%C a(n) is the number of non-isomorphic generalized rigid ladders with n cells. A generalized rigid ladder with n cells is a graph with vertex set is the union of {u_0, u_1, ..., u_n} and {v_0, v_1, ..., v_n}, and for every 0 <= i <= n-1, the edges are of the form {u_i,u_i+1}, {v_i, v_i+1}, {u_i,v_i} and either {u_i,v_i+1} or {u_i+1,v_i}. - _Christian Barrientos_, Jul 29 2018

%C Also number of non-isomorphic stairs with n+1 cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. - _Christian Barrientos_ and _Sarah Minion_, Jul 29 2018

%C From _Robert A. Russell_, Oct 28 2018: (Start)

%C There are two different unoriented row colorings using two colors that give us very similar results here, a difference of one in the offset. In an unoriented row, chiral pairs are counted as one.

%C a(n) is the number of color patterns (set partitions) of an unoriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if the colors are permutable.

%C a(n+1) is the number of ways to color an unoriented row of length n using two noninterchangeable colors (one need not use both colors).

%C See the examples below of these two different colorings. (End)

%C Also arises from the enumeration of types of based polyhedra with exactly two triangular faces [Rademacher]. - _N. J. A. Sloane_, Apr 24 2020

%C a(n) is the number of (unlabeled) 2-paths with n+4 vertices. (A 2-path with order n at least 4 can be constructed from a 3-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to an existing 2-clique containing an existing 2-leaf.) - _Allan Bickle_, Apr 05 2022

%C a(n) is the number of caterpillars with a perfect matching and order 2n+2. - _Christian Barrientos_, Sep 12 2023

%D K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.

%D Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)

%D Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.

%D Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)

%D M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

%D C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Reinhard Zumkeller, <a href="/A005418/b005418.txt">Table of n, a(n) for n = 1..1000</a>

%H M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Archibald/arch3.html">Inversions and Parity in Compositions of Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pp. 151 and 733.

%H Andrei Asinowski and Alon Regev, <a href="https://www.emis.de/journals/INTEGERS/papers/q5/q5.Abstract.html">Triangulations with Few Ears: Symmetry Classes and Disjointness</a>, Integers 16 (2016), #A5.

%H A. T. Balaban, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match24/match24_29-38.pdf">Chemical graphs. Part 50. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes)</a>, MATCH: Commun. Math. Comput. Chem., 24 (1989) 29-38.

%H Allan Bickle, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Bickle/bickle5.html">How to Count k-Paths</a>, J. Integer Sequences, 25 (2022) Article 22.5.6.

%H Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs 0 1 (2024) Article 5.

%H A. P. Burger, M. Van Der Merwe, and J. H. Van Vuuren, <a href="https://doi.org/10.1016/j.dam.2012.04.022">An asymptotic analysis of the evolutionary spatial prisoner’s dilemma on a path</a>, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012), Table 3.1.

%H C. Ceballos, F. Santos, and G. Ziegler, <a href="http://arxiv.org/abs/1109.5544">Many Non-equivalent Realizations of the Associahedron</a>, arXiv:1109.5544 [math.MG], 2011-2013; pp. 15 and 26.

%H Jacob Crabtree, <a href="https://arxiv.org/abs/1810.11744">Another Enumeration of Caterpillar Trees</a>, arXiv:1810.11744 [math.CO], 2018.

%H S. J. Cyvin, B. N. Cyvin, J. Brunvoll, E. Brendsdal, Zhang Fuji, Guo Xiaofeng, and R. Tosic, <a href="http://dx.doi.org/10.1021/ci00013a027">Theory of polypentagons</a>, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.

%H Miroslav Marinov Dimitrov, <a href="http://www.math.bas.bg/IMIdocs/ZRASRB/docs/Miroslav_Dimitrov_phd/MDimitrov-avtoreferat-EN.pdf">Designing Boolean Functions and Digital Sequences for Cryptology and Communications</a>, Ph. D. Dissertation, Bulgarian Acad. Sci. (Sofia, Bulgaria 2023).

%H A. A. Dobrynin, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match64/n3/match64n3_707-726.pdf">On the Wiener index of fibonacenes</a>, MATCH: Commun. Math. Comput. Chem, 64 (2010), 707-726.

%H J. Eckhoff, <a href="https://doi.org/10.1002/jgt.3190170112">Extremal interval graphs</a>, J. Graph Theory 17 1 (1993), 117-127.

%H Sahir Gill, <a href="https://doi.org/10.12988/ijma.2018.8537">Bounds for Region Containing All Zeros of a Complex Polynomial</a>, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.

%H T. A. Gittings, <a href="http://www.arXiv.org/abs/math.GT/0401051">Minimum braids: a complete invariant of knots and links</a>, arXiv:math/0401051 [math.GT], 2004. - _N. J. A. Sloane_, Jan 18 2013

%H R. K. Guy, <a href="/A005418/a005418.pdf">Letter to N. J. A. Sloane, Nov 1978</a>.

%H Frank Harary and Allen J. Schwenk, <a href="https://doi.org/10.1016/0012-365X(73)90067-8">The number of caterpillars</a>, Discrete Mathematics, Volume 6, Issue 4, 1973, 359-365.

%H N. Hoffman, <a href="http://www.jstor.org/stable/3026472">Binary grids and a related counting problem</a>, Two-Year College Math. J. 9 (1978), 267-272.

%H S. V. Jablan, <a href="http://www.emis.de/journals/NSJOM/Papers/29_3/NSJOM_29_3_121_139.pdf">Geometry of Links</a>, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29 (1999), no. 3, 121-139.

%H S. M. Losanitsch, <a href="/A000602/a000602_1.pdf">Die Isomerie-Arten bei den Homologen der Paraffin-Reihe</a>, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)

%H Isaac B. Michael and M. R. Sepanski, <a href="https://ajc.maths.uq.edu.au/pdf/66/ajc_v66_p192.pdf">Net regular signed trees</a>, Australasian Journal of Combinatorics, Volume 66(2) (2016), 192-204.

%H U. N. Peled and F. Sun, <a href="http://dx.doi.org/10.1016/0166-218X(94)00061-H">Enumeration of difference graphs</a>, Discrete Appl. Math., 60 (1995), 311-318.

%H Paulo Renato da Costa Pereira, Lilian Markenzon and Oswaldo Vernet, <a href="https://doi.org/10.1016/j.dam.2008.05.015">A clique-difference encoding scheme for labelled k-path graphs</a>, Discrete Appl. Math. 156 (2008), 3216-3222.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Hans Rademacher, <a href="https://doi.org/10.1215/ijm/1256068140">On the number of certain types of polyhedra</a>, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564. See Theorem 8, Eq. 14.3.

%H A. Regev, <a href="http://arxiv.org/abs/1309.0743">Remarks on two-eared triangulations</a>, arXiv preprint arXiv:1309.0743 [math.CO], 2013-2014.

%H Suthee Ruangwises, <a href="https://arxiv.org/abs/2306.13551">The Landscape of Computing Symmetric n-Variable Functions with 2n Cards</a>, arXiv:2306.13551 [cs.CR], 2023.

%H N. J. A. Sloane, <a href="/classic.html#LOSS">Classic Sequences</a>

%H R. A. Sulanke, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/SULANKE/sulanke.html">Moments of generalized Motzkin paths</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarkerCode.html">Barker Code</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BishopsProblem.html">Bishops Problem</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CaterpillarGraph.html">Caterpillar Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LosanitschsTriangle.html">Losanitsch's Triangle</a>.

%H A. Yajima, <a href="https://doi.org/10.1246/bcsj.20140204">How to calculate the number of stereoisomers of inositol-homologs</a>, Bull. Chem. Soc. Jpn. 87 (2014), 1260-1264; see Tables 1 and 2 (and text). - _N. J. A. Sloane_, Mar 26 2015

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-4).

%F a(n) = 2^(n-2) + 2^(floor(n/2) - 1).

%F G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - _Simon Plouffe_ in his 1992 dissertation

%F G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - _Wolfdieter Lang_, May 08 2001

%F a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - _Henry Bottomley_, Jul 14 2001

%F a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - _Yosu Yurramendi_, Oct 24 2008

%F a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - _Jaume Oliver Lafont_, Dec 05 2008

%F Union of A007582 and A161168. Union of A007582 and A063376. - _Jaroslav Krizek_, Aug 14 2009

%F G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Dec 12 2011

%F a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - _Johannes W. Meijer_, Aug 26 2013

%F From _Robert A. Russell_, Oct 28 2018: (Start)

%F a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.

%F a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.

%F a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).

%F a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)

%F E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - _Stefano Spezia_, Jun 01 2022

%e a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012

%e G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018

%e From _Robert A. Russell_, Oct 28 2018: (Start)

%e For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.

%e For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)

%p A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);

%t LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* _Harvey P. Dale_, Jan 18 2012 *)

%o (Haskell)

%o a005418 n = sum $ a034851_row (n - 1) -- _Reinhard Zumkeller_, Jan 14 2012

%o (PARI) A005418(n)= 2^(n-2) + 2^(n\2-1); \\ _Joerg Arndt_, Sep 16 2013

%o (Python)

%o def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # _Chai Wah Wu_, Feb 03 2022

%Y Column 2 of A320750 (set partitions).

%Y Cf. A131577 (oriented), A122746(n-3) (chiral), A016116 (achiral), for set partitions with up to two subsets.

%Y Column 2 of A277504, offset by one (colors not permutable).

%Y Cf. A000079 (oriented), A122746(n-2) (chiral), and A060546 (achiral), for a(n+1).

%Y Cf. A001998, A001444, A051436, A051437, A007582, A001445, A032085.

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_, _R. K. Guy_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 17:50 EDT 2024. Contains 372533 sequences. (Running on oeis4.)