The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005380 Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).
(Formerly M1601)
34

%I M1601 #102 May 28 2021 06:03:03

%S 1,2,6,14,33,70,149,298,591,1132,2139,3948,7199,12894,22836,39894,

%T 68982,117948,199852,335426,558429,922112,1511610,2460208,3977963,

%U 6390942,10206862,16207444,25596941,40214896,62868772,97814358

%N Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).

%C Also, a(n) = number of partitions of the integer n where there are k+1 different kinds of part k for k = 1, 2, 3, ....

%C Also, a(n) = number of partitions of n objects of 2 colors. These are set partitions, the n objects are not labeled but colored, using two colors. For each subset of size k there are k+1 different possibilities, i=0..k white and k-i black objects.

%C Also, a(n) = number of simple unlabeled graphs with n nodes of 2 colors whose components are complete graphs. - _Geoffrey Critzer_, Sep 27 2012

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 7.99, p. 484 and pp. 548-549.

%H Alois P. Heinz, <a href="/A005380/b005380.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from T. D. Noe)

%H P. J. Cameron, <a href="http://dx.doi.org/10.1016/0012-365X(89)90081-2">Some sequences of integers</a>, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.

%H Carlos A. A. Florentino, <a href="https://arxiv.org/abs/2105.13049">Plethystic exponential calculus and permutation polynomials</a>, arXiv:2105.13049 [math.CO], 2021. Mentions this sequence.

%H Vaclav Kotesovec, <a href="/A005380/a005380.jpg">Graph - The asymptotic ratio</a>

%H P. A. MacMahon, <a href="http://www.jstor.org/stable/90574">Memoir on symmetric functions of the roots of systems of equations</a>, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H R. P. Stanley, <a href="http://www-math.mit.edu/~rstan//pubs/pubfiles/12-2.pdf">Theory and Applications of Plane Partitions: Part 2</a>, Studies in Appl. Math., 1 (1971), 259-279.

%H R. P. Stanley, <a href="http://dx.doi.org/10.1016/0097-3165(73)90063-0">The conjugate trace and trace of a plane partition</a>, J. Combin. Theory, vol. A14 53-65 1973, esp. p. 64.

%F EULER transform of b(n) = n+1.

%F a(n) ~ Zeta(3)^(13/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * 3^(1/2) * Pi * n^(31/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - _Vaclav Kotesovec_, Mar 07 2015

%F a(n) = A089353(n+m, m), n >= 1, for each m >= n. a(0) =1. See the Stanley reference, Exercise 7.99. - _Wolfdieter Lang_, Mar 09 2015

%F G.f.: exp(Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k). - _Ilya Gutkovskiy_, Aug 11 2018

%e We represent each summand, k, in a partition of n as k identical objects. Then we color each object. We have no regard for the order of the colored objects.

%e a(3) = 14 because we have: www; wwb; wbb; bbb; ww + w; ww + b; wb + w; wb + b; bb + w; bb + b; w + w + w; w + w + b; w + b + b; b + b + b, where the 2 colors are black b and white w. - _Geoffrey Critzer_, Sep 27 2012

%e a(3) = 14 because we have: 3; 3'; 3''; 3'''; 2 + 1; 2 + 1'; 2' + 1; 2' + 1'; 2'' + 1; 2'' + 1'; 1 + 1 + 1; 1 + 1 + 1'; 1 + 1' + 1'; 1' + 1' + 1', where a part k of different sorts is given as k, k', k'', etc. - _Joerg Arndt_, Mar 09 2015

%e From _Alois P. Heinz_, Mar 09 2015: (Start)

%e The a(4) = 33 = 5 + 9 + 6 + 8 + 5 partitions of 4 objects of 2 colors are:

%e 5 partitions for the integer partition of 4 = 1 + 1 + 1 + 1:

%e 01: {{b}, {b}, {b}, {b}}

%e 02: {{b}, {b}, {b}, {w}}

%e 03: {{b}, {b}, {w}, {w}}

%e 04: {{b}, {w}, {w}, {w}}

%e 05: {{w}, {w}, {w}, {w}}

%e 9 partitions for the integer partition of 4 = 1 + 1 + 2:

%e 06: {{b}, {b}, {b,b}}

%e 07: {{b}, {w}, {b,b}}

%e 08: {{w}, {w}, {b,b}}

%e 09: {{b}, {b}, {w,b}}

%e 10: {{b}, {w}, {w,b}}

%e 11: {{w}, {w}, {w,b}}

%e 12: {{b}, {b}, {w,w}}

%e 13: {{b}, {w}, {w,w}}

%e 14: {{w}, {w}, {w,w}}

%e 6 partitions for the integer partition of 4 = 2 + 2:

%e 15: {{b,b}, {b,b}}

%e 16: {{b,b}, {w,b}}

%e 17: {{b,b}, {w,w}}

%e 18: {{w,b}, {w,b}}

%e 19: {{w,b}, {w,w}}

%e 20: {{w,w}, {w,w}}

%e 8 partitions for the integer partition of 4 = 1 + 3:

%e 21: {{b}, {b,b,b}}

%e 22: {{w}, {b,b,b}}

%e 23: {{b}, {w,b,b}}

%e 24: {{w}, {w,b,b}}

%e 25: {{b}, {w,w,b}}

%e 26: {{w}, {w,w,b}}

%e 27: {{b}, {w,w,w}}

%e 28: {{w}, {w,w,w}}

%e 5 partitions for the integer partition of 4 = 4:

%e 29: {{b,b,b,b}}

%e 30: {{w,b,b,b}}

%e 31: {{w,w,b,b}}

%e 32: {{w,w,w,b}}

%e 33: {{w,w,w,w}}

%e Some see number partitions, others see set partitions, ...

%e (End)

%e It is obvious from the example of _Alois P. Heinz_ that a(n) enumerates multi-set partitions of a multi-set of n elements of two kinds. In the case that there is only one kind, this reduces to the usual case of numerical partitions. In the case that all the n elements are distinct, then this reduces to the case of set partitions. - _Michael Somos_, Mar 09 2015

%e There are a(3) = 14 plane partitions of 6 with trace 3; of 7 with trace 4; of 8 with trace 5; etc. See a formula above with the Stanley Exercise 7.99. - _Wolfdieter Lang_, Mar 09 2015

%e From _Daniel Forgues_, Mar 09 2015: (Start)

%e The a(3) = 14 = 4 + 6 + 4 partitions of 3 objects of 2 colors are:

%e 4 partitions for the integer partition of 3 = 1 + 1 + 1:

%e 01: {{b}, {b}, {b}}

%e 02: {{b}, {b}, {w}}

%e 03: {{b}, {w}, {w}}

%e 04: {{w}, {w}, {w}}

%e 6 partitions for the integer partition of 3 = 1 + 2:

%e 05: {{b}, {b,b}}

%e 06: {{w}, {b,b}}

%e 07: {{b}, {w,b}}

%e 08: {{w}, {w,b}}

%e 09: {{b}, {w,w}}

%e 10: {{w}, {w,w}}

%e 4 partitions for the integer partition of 3 = 3:

%e 11: {{b,b,b}}

%e 12: {{w,b,b}}

%e 13: {{w,w,b}}

%e 14: {{w,w,w}}

%e The a(2) = 6 = 3 + 3 partitions of 2 objects of 2 colors are:

%e 3 partitions for the integer partition of 2 = 1 + 1:

%e 01: {{b}, {b}}

%e 02: {{b}, {w}}

%e 03: {{w}, {w}}

%e 3 partitions for the integer partition of 2 = 2:

%e 04: {{b,b}}

%e 05: {{w,b}}

%e 06: {{w,w}}

%e The a(1) = 2 partitions of 1 object of 2 colors are:

%e 2 partitions for the integer partition of 1 = 1:

%e 01: {{b}}

%e 02: {{w}}

%e a(0) = 1: the empty partition, since empty sum is 0.

%e Triangle(sort of, since n_th row has p(n) = A000041 terms):

%e 1: 2

%e 2: 3, 3

%e 3: 4, 6, 4

%e 4: 5, 9, 6, 8, 5

%e 5: 6, ?, ?, ?, ?, ?, 6

%e 6: 7, ?, ?, ?, ?, ?, ?, ?, ?, ?, 7

%e Can we find a recurrence relation? (End)

%p mul( (1-x^i)^(-i-1),i=1..80); series(%,x,80); seriestolist(%);

%p # second Maple program:

%p with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n+1): seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 08 2008

%t max = 31; f[x_] = Product[ 1/(1-x^k)^(k+1), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* _Jean-François Alcover_, Nov 08 2011, after g.f. *)

%t etr[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n==0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; a = etr[#+1&]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Nov 23 2015, after _Alois P. Heinz_ *)

%o (PARI) a(n)=polcoeff(prod(i=1,n,(1-x^i+x*O(x^n))^-(i+1)),n)

%Y Row sums of A054225.

%Y Column k=2 of A075196.

%Y Cf. A000219, A219555, A217093, A255050, A255052, A089353, A298988.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _Christian G. Bower_, Sep 07 2002

%E New name from _Joerg Arndt_, Mar 09 2015

%E Restored 1995 name. - _N. J. A. Sloane_, Mar 09 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 09:05 EDT 2024. Contains 372673 sequences. (Running on oeis4.)