The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0. 26

%I #80 Sep 14 2022 16:52:08

%S 1,1,1,1,2,1,1,2,3,1,1,2,4,4,1,1,2,4,7,5,1,1,2,4,8,11,6,1,1,2,4,8,15,

%T 16,7,1,1,2,4,8,16,26,22,8,1,1,2,4,8,16,31,42,29,9,1,1,2,4,8,16,32,57,

%U 64,37,10,1,1,2,4,8,16,32,63,99,93,46,11,1,1,2,4,8,16,32,64,120,163

%N Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.

%C As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - _Paul Barry_, Aug 23 2004

%C As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - _Paul Barry_, Feb 16 2005

%C Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - _Philippe Deléham_, Aug 28 2005

%C Square array A026729 -> Partial sums across rows

%C 1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .

%C 1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .

%C 1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .

%C 1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .

%C For other Whitney numbers see A007799.

%C W(n,k) is the number of length k binary sequences containing no more than n 1's. - _Geoffrey Critzer_, Mar 15 2010

%C From _Emeric Deutsch_, Jun 15 2010: (Start)

%C Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.

%C (End)

%C Named after the American mathematician Hassler Whitney (1907-1989). - _Amiram Eldar_, Jun 13 2021

%D Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [_Emeric Deutsch_, Jun 15 2010]

%H Gustav Burosch, Hans-Dietrich O.F. Gronau, Jean-Marie Laborde and Ingo Warnke, <a href="http://dx.doi.org/10.1016/0012-365X(94)00256-I">On posets of m-ary words</a>, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 69-91. MR1388633 (97e:06002)

%H Matteo Cervetti and Luca Ferrari, <a href="https://arxiv.org/abs/2009.01024">Pattern avoidance in the matching pattern poset</a>, arXiv:2009.01024 [math.CO], 2020.

%H Matteo Cervetti and Luca Ferrari, <a href="https://doi.org/10.1007/s00026-022-00596-1">Enumeration of Some Classes of Pattern Avoiding Matchings, with a Glimpse into the Matching Pattern Poset</a>, Annals of Combinatorics (2022).

%H Richard K. Guy, <a href="/A003271/a003271.pdf">Letter to N. J. A. Sloane, Apr 1975</a>.

%H Yasuichi Horibe, <a href="http://www.fq.math.ca/Scanned/20-2/horibe.pdf">An entropy view of Fibonacci trees</a>, Fibonacci Quarterly, Vol. 20, No. 2 (1982), pp. 168-178. [From _Emeric Deutsch_, Jun 15 2010]

%H Robin Pemantle and Mark C. Wilson, <a href="http://dx.doi.org/10.1137/050643866">Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions, SIAM Rev., Vol. 50, No. 2 (2008), pp. 199-272. See p. 233.

%F W(n, k) = Sum_{i=0..n} binomial(k, i). - _Bill Gosper_

%F W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - _David Broadhurst_, Jan 05 2000

%F The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - _Gary W. Adamson_, Nov 15 2007

%F E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - _Geoffrey Critzer_, Mar 15 2010

%F G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - _Michael Somos_, May 31 2016

%F W(n, n) = 2^n. - _Michael Somos_, May 31 2016

%F From _Jianing Song_, May 30 2022: (Start)

%F T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.

%F T(n, k) = Sum_{m=0..n-k} binomial(k, m).

%F T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)

%e Table W(n,k) begins:

%e 1 1 1 1 1 1 1 ...

%e 1 2 3 4 5 6 7 ...

%e 1 2 4 7 11 16 22 ...

%e 1 2 4 8 15 26 42 ... - _Michael Somos_, Apr 28 2000

%e W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - _Geoffrey Critzer_, Mar 15 2010

%e Table T(n, k) begins:

%e 1

%e 1 1

%e 1 2 1

%e 1 2 3 1

%e 1 2 4 4 1

%e 1 2 4 7 5 1

%e 1 2 4 8 11 6 1

%e ... - _Michael Somos_, May 31 2016

%t Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* _Geoffrey Critzer_, Mar 15 2010 *)

%t T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* _Michael Somos_, May 31 2016 *)

%o (PARI) /* array read by antidiagonals up coordinate index functions */

%o t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */

%o t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */

%o /* define the sequence array function for A004070 */

%o W(n, k) = sum(i=0, n, binomial(k, i));

%o /* visual check ( origin 0,0 ) */

%o printp(matrix(7, 7, n, k, W(n-1, k-1)));

%o /* print the sequence entries by antidiagonals going up ( origin 0,0 ) */

%o print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))","));

%o print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))","));

%o print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))",")); /* _Michael Somos_, Apr 28 2000 */

%o (PARI) T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ _Jianing Song_, May 30 2022

%Y Cf. A007799. As a triangle, mirror A052509.

%Y Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.

%Y Rows are: A000012, A000027, A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862, A008863. - _Geoffrey Critzer_, Mar 15 2010

%Y Cf. A178522, A178524. - _Emeric Deutsch_, Jun 15 2010

%K tabl,nonn,easy,nice

%O 0,5

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 19:58 EDT 2024. Contains 372882 sequences. (Running on oeis4.)