The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004006 a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6. 66

%I #161 Mar 27 2024 15:52:11

%S 0,1,3,7,14,25,41,63,92,129,175,231,298,377,469,575,696,833,987,1159,

%T 1350,1561,1793,2047,2324,2625,2951,3303,3682,4089,4525,4991,5488,

%U 6017,6579,7175,7806,8473,9177,9919,10700,11521,12383,13287,14234,15225

%N a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.

%C 3-dimensional analog of centered polygonal numbers.

%C The Burnside group B(3,n) has order 3^a(n).

%C Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - _Leonid Broukhis_, Oct 24 2000

%C Equals row sums of triangle A144329 starting with "1". - _Gary W. Adamson_, Sep 18 2008

%C Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - _Milan Janjic_, Jan 24 2010

%C From _J. M. Bergot_, Aug 03 2011: (Start)

%C If one formed the 3 X 3 square

%C | n | n+1 | n+2 |

%C | n+3 | n+4 | n+5 |

%C | n+6 | n+7 | n+8 |

%C and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)

%C a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - _Gary Detlefs_, Dec 08 2011

%C From _Beimar Naranjo_, Feb 22 2024: (Start)

%C Number of compositions with at most three parts and sum at most n.

%C Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)

%D W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.

%H Vincenzo Librandi, <a href="/A004006/b004006.txt">Table of n, a(n) for n = 0..5000</a>

%H Michael Boardman, <a href="http://www.jstor.org/stable/3219201">The Egg-Drop Numbers</a>, Mathematics Magazine, 77 (2004), 368-372. [From Parthasarathy Nambi, Sep 30 2009]

%H F. Javier de Vega, <a href="https://arxiv.org/abs/2003.13378">An extension of Furstenberg's theorem of the infinitude of primes</a>, arXiv:2003.13378 [math.NT], 2020.

%H Oboifeng Dira, <a href="http://www.seams-bull-math.ynu.edu.cn/downloadfile.jsp?filemenu=_201706&amp;filename=07_41(6).pdf">A Note on Composition and Recursion</a>, Southeast Asian Bulletin of Mathematics, 2017, Vol. 41 Issue 6, pp. 849-853.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8.

%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (11).

%H Laurent Saloff-Coste, <a href="http://www.math.cornell.edu/~lsc/chap5.pdf">Random walks on finite groups</a>, in Probability on discrete structures, 263-346, Encyclopaedia Math. Sci., 110, Springer, 2004).

%H Bridget Eileen Tenner, <a href="https://doi.org/10.1007/s10801-017-0752-8">Reduced word manipulation: patterns and enumeration</a>, J. Algebr. Comb. 46, No. 1, 189-217 (2017), w in S_n(231) l(w)=3.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(1-x+x^2)/(1-x)^4.

%F E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).

%F a(-n) = -a(n).

%F a(n) = binomial(n+2,n-1) - binomial(n,n-2). - _Zerinvary Lajos_, May 11 2006

%F Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - _Michael Somos_, May 04 2007

%F Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - _Gary W. Adamson_, Apr 24 2008

%F a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Harvey P. Dale_, Aug 21 2011

%F a(n+1) = A000292(n) + n + 1. - _Reinhard Zumkeller_, Mar 31 2012

%F a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - _Richard R. Forberg_, Jan 23 2014

%F a(n) = Sum_{i=1..n} binomial(n-2i,2). - _Wesley Ivan Hurt_, Nov 18 2017

%F a(n) = n + Sum_{k=0..n} k*(n-k). - _Gionata Neri_, May 19 2018

%F a(n) = Sum_{k=0..n-1} A000124(k). - _Torlach Rush_, Aug 05 2018

%F G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - _Michael Somos_, Dec 29 2019

%F G.f.: g(f(x)), where g is g.f. of A001477 and f is g.f. of A128834. - _Oboifeng Dira_, Jun 21 2020

%F Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - _Stefano Spezia_, Aug 31 2023

%e G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019

%p A004006 := proc(n) n*(n^2+5)/6 ;end proc:

%p seq(A004006(n),n=0..10) ; # _R. J. Mathar_, Jun 05 2011

%t Table[Total[Table[Binomial[n,i], {i,3}]], {n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,3,7}, 50] (* _Harvey P. Dale_, Aug 21 2011 *)

%o (PARI) {a(n) = n*(n^2 + 5)/6}; /* _Michael Somos_, May 04 2007 */

%o (Magma) [n*(n^2+5)/6: n in [0..50]]; // _Vincenzo Librandi_, May 15 2011

%o (Haskell)

%o a004006 n = a000292 n + n + 1 -- _Reinhard Zumkeller_, Mar 31 2012

%o (Maxima) A004006(n):=n*(n^2+5)/6$ makelist(A004006(n),n,0,30); /* _Martin Ettl_, Jan 08 2013 */

%o (Sage) [n*(n^2+5)/6 for n in (0..50)] # _G. C. Greubel_, Aug 27 2019

%o (GAP) List([0..50], n-> n*(n^2+5)/6); # _G. C. Greubel_, Aug 27 2019

%Y Cf. A051576, A055795, A006552. Differences give A000217 + 1 or A000124.

%Y 1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

%Y Cf. A000292, A001477, A007310, A128834, A144329, A228074.

%K nonn,nice,easy

%O 0,3

%A Albert D. Rich (Albert_Rich(AT)msn.com)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:53 EDT 2024. Contains 372607 sequences. (Running on oeis4.)