The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003823 Power series expansion of the Rogers-Ramanujan continued fraction 1+x/(1+x^2/(1+x^3/(1+x^4/(1+...)))). 25
1, 1, 0, -1, 0, 1, 1, -1, -2, 0, 2, 2, -1, -3, -1, 3, 3, -2, -5, -1, 6, 5, -3, -8, -2, 8, 7, -5, -12, -2, 13, 12, -7, -18, -4, 18, 16, -11, -26, -5, 27, 24, -14, -37, -8, 37, 33, -21, -52, -10, 53, 47, -29, -72, -15, 71, 63, -40, -98, -19, 99, 88, -53, -133, -27, 131, 115, -73, -178, -35, 177, 156, -95, -236, -48, 232, 204, -127, -311 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
This is the q-expansion of the Gamma(5)-modular function (or automorphic function) Lambda given, for example, in Erdelyi et al., Higher Transcendental Functions eq. 44 volume 3 page 24 sec. 14.6.3 - Warren Smith.
Number 14 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014
A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma(5). [Yang 2004] - Michael Somos, Aug 07 2014
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 81.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.
H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 404.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
S.-D. Chen and S.-S. Huang, On the series expansion of the Göllnitz-Gordon continued fraction, Internat. J. Number Theory, 1 (2005), 53-63.
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162; see Eq. (6.5).
J. Malenfant, Generalizing Ramanujan's J Functions, arXiv preprint arXiv:1109.5957 [math.NT], 2011.
Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1.
FORMULA
G.f.: Prod_{k>0} (1-x^{5k-2})(1-x^{5k-3})/((1-x^{5k-1})(1-x^{5k-4})).
G.f.: (Sum_{k in Z} (-1)^k * x^((5*k + 1) * k/2)) / (Sum_{k in Z} (-1)^k * x^((5*k + 3) * k/2)). - Michael Somos, Dec 13 2002
Euler transform of period 5 sequence [1, -1, -1, 1, 0, ...]. - Michael Somos, Dec 13 2002
G.f. is reciprocal of that for the Rogers-Ramanujan continued fraction r(tau) - see A007325.
Expansion of f(-x^2, -x^3) / f(-x, -x^4) in powers of x where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Aug 07 2014
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = 1 + x - x^3 + x^5 + x^6 - x^7 - 2*x^8 + 2*x^10 + 2*x^11 - x^12 - ...
G.f. = 1/q + q^4 - q^14 + q^24 + q^29 - q^34 - 2*q^39 + 2*q^49 + 2*q^54 - q^59 + ...
MAPLE
M := 100: a[ M ] := 1+z; for n from M-1 by -1 to 1 do a[ n ] := series( 1 + z^n/a[ n+1 ], z, M+1); od: a[ 1 ];
M:=100; qf:=(a, q)->mul(1-a*q^j, j=0..M); t1:=qf(q^2, q^5)*qf(q^3, q^5)/(qf(q, q^5)*qf(q^4, q^5)); series(%, q, M); seriestolist(%);
MATHEMATICA
kmax = 16; f[x_] := Product[(1-x^(5k-2))*(1-x^(5k-3))/((1-x^(5k-1))*(1-x^(5k-4))), {k, 1, kmax}]; CoefficientList[ Series[f[x], {x, 0, 5*kmax}], x] (* Jean-François Alcover, Nov 02 2011, after g.f. *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *)
a[ n_] := If[n < 0, 0, SeriesCoefficient[ 1 / ContinuedFractionK[ x^k, 1, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Jul 09 2014 *)
PROG
(PARI) {a(n) = local(k); if( n<0, 0, k = (3 + sqrtint(9 + 40*n)) \ 10; polcoeff( sum( i=-k, k, (-1)^i * x^((5*i^2 + i)/2), x * O(x^n)) / sum( i=-k, k, (-1)^i * x^((5*i^2 + 3*i)/2), x * O(x^n)), n))}; /* Michael Somos, Dec 13 2002 */
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, if( k%5, (1 - x^k)^( -(-1)^binomial( k%5, 2)), 1), 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 13 2002 */
(PARI) {a(n) = local(cf); if( n<0, 0, cf = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1))); polcoeff( cf[1, 1] / cf[2, 1] + x * O(x^n), n))}; /* Michael Somos, Dec 13 2002 */
CROSSREFS
Cf. A007325.
Sequence in context: A308626 A268755 A128664 * A059451 A083817 A286222
KEYWORD
sign,easy,nice
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 19:33 EDT 2024. Contains 373110 sequences. (Running on oeis4.)