The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003501 a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.
(Formerly M1540)
21

%I M1540 #90 Oct 25 2022 16:58:24

%S 2,5,23,110,527,2525,12098,57965,277727,1330670,6375623,30547445,

%T 146361602,701260565,3359941223,16098445550,77132286527,369562987085,

%U 1770682648898,8483850257405,40648568638127,194758992933230,933146396028023,4470972987206885

%N a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.

%C Positive values of x satisfying x^2 - 21*y^2 = 4; values of y are in A004254. - _Wolfdieter Lang_, Nov 29 2002

%C Except for the first term, positive values of x (or y) satisfying x^2 - 5xy + y^2 + 21 = 0. - _Colin Barker_, Feb 08 2014

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003501/b003501.txt">Table of n, a(n) for n = 0..200</a>

%H Peter Bala, <a href="/A174500/a174500_2.pdf">Some simple continued fraction expansions for an infinite product, Part 1</a>

%H Noureddine Chair, <a href="https://doi.org/10.1016/j.aop.2012.09.002">Exact two-point resistance, and the simple random walk on the complete graph minus N edges</a>, Ann. Phys. 327, No. 12, 3116-3129 (2012), P(7).

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Lisa Lokteva, <a href="https://arxiv.org/abs/2208.14850">Constructing Rational Homology 3-Spheres That Bound Rational Homology 4-Balls</a>, arXiv:2208.14850 [math.GT], 2022.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Jeffrey Shallit, <a href="http://www.jstor.org/stable/2690344">An interesting continued fraction</a>, Math. Mag., 48 (1975), 207-211.

%H Jeffrey Shallit, <a href="/A005248/a005248_1.pdf">An interesting continued fraction</a>, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1).

%F a(n) = 5*S(n-1, 5) - 2*S(n-2, 5) = S(n, 5) - S(n-2, 5) = 2*T(n, 5/2), with S(n, x)=U(n, x/2), S(-1, x)=0, S(-2, x)=-1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 5) = A004254(n), n>=0.

%F G.f.: (2-5*x)/(1-5*x+x^2). - _Simon Plouffe_ in his 1992 dissertation.

%F a(n) ~ (1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002

%F a(n) = ap^n + am^n, with ap=(5+sqrt(21))/2 and am=(5-sqrt(21))/2.

%F a(n) = sqrt(4 + 21*A004254(n)^2).

%F From _Peter Bala_, Jan 06 2013: (Start)

%F Let F(x) = Product_{n=0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(5 - sqrt(21)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.19827 65373 95327 17782 ... = 2 + 1/(5 + 1/(23 + 1/(110 + ...))).

%F Also F(-alpha) = 0.79824 49142 28050 93561 ... has the continued fraction representation 1 - 1/(5 - 1/(23 - 1/(110 - ...))) and the simple continued fraction expansion 1/(1 + 1/((5-2) + 1/(1 + 1/((23-2) + 1/(1 + 1/((110-2) + 1/(1 + ...))))))).

%F F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((5^2-4) + 1/(1 + 1/((23^2-4) + 1/(1 + 1/((110^2-4) + 1/(1 + ...))))))).

%F (End)

%F a(n) = (A217787(k+3n) + A217787(k-3n))/A217787(k) for k>=3n. - _Bruno Berselli_, Mar 25 2013

%e G.f. = 2 + 5*x + 23*x^2 + 110*x^3 + 527*x^4 + 2525*x^5 + ... - _Michael Somos_, Oct 25 2022

%p seq( simplify(2*ChebyshevT(n, 5/2)), n=0..30); # _G. C. Greubel_, Jan 16 2020

%t a[0]=2; a[1]=5; a[n_]:= 5a[n-1] -a[n-2]; Table[a[n], {n,0,30}] (* _Robert G. Wilson v_, Jan 30 2004 *)

%t LinearRecurrence[{5,-1},{2,5},30] (* _Harvey P. Dale_, May 12 2019 *)

%t 2*ChebyshevT[Range[0, 30], 5/2] (* _G. C. Greubel_, Jan 16 2020 *)

%t a[ n_] := LucasL[n, 5*I]/I^n; (* _Michael Somos_, Oct 25 2022 *)

%o (PARI) {a(n) = subst(poltchebi(n),x,5/2)*2};

%o (PARI) {a(n) = polchebyshev(n,1,5/2)*2 }; /* _Michael Somos_, Oct 25 2022 */

%o (Sage) [lucas_number2(n,5,1) for n in range(37)] # _Zerinvary Lajos_, Jun 25 2008

%o (Magma) I:=[2,5]; [n le 2 select I[n] else 5*Self(n-1) -Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 16 2020

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!((2-5*x)/(1-5*x+x^2))); // _Marius A. Burtea_, Jan 16 2020

%o (GAP) a:=[2,5];; for n in [4..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 16 2020

%Y Cf. A004252, A004253, A217787.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 13:51 EDT 2024. Contains 373217 sequences. (Running on oeis4.)