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John U. Marshall

The Construction of the Loschian Landscape

Previous descriptions of Lésch’s economic landscape have not included
accurate rules for maximizing the spatial coincidence of suppliers of
different goods. With N denoting the number of farms served by a supplier,
the correct procedure is shown to involve separate treatment of (a) cases
in which N is of the form x* or 3x2, (b) cases in which N is a prime
number, and (c) all other cases. In the first case the primitive function
points of the lattice of suppliers lie on the boundaries of the landscape’s
conventional subsectors. In the second case the locations for the primitive
function points may be chosen at will, but in the third case these locations
are completely determined by the locations selected for cases in which
N is prime. For all lattices with two or more possible orientations the
grid coordinates of the primitive function points correspond to unequiva-
lent solutions of the Diophantine equation used to generate the Léschian
numbers. It is also shown that city-rich and city-poor sectors do not
exist in the Léschian landscape whether or not the spatial coincidence
of suppliers is maximized.

When Losch developed the theoretical economic landscape that bears
his name, he considered it to be relevant for all nonextractive punctiform
production, including manufacturing as well as central-place activities
[11,pp. 101-37]. It has long been recognized, however, that the Lschian
fandscape is a tenable construct only for those types of production in
which no significant locational attraction is exerted by raw materials
[8, p. 274]. Accordingly, Losch’s approach is regarded as inadequate
with respect to manufacturing, and the conventional view is to accept
his model as a contribution to central-place theory [I, pp. 68-73; 7,
pp. 122-24; 9, pp. 96-98]. It almost goes without saying that central-place
theory refers to only one component, albeit a very important component,
of the total urban economy.

Central-place theory is normally written for an economy in which
each entrepreneur provides only a single good or service. Real central-
place firms, by contrast, rarely deal in just one good. There is no reason
why classical central-place theory should not incorporate multiple-good
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tirms, provided that each entrepreneur is assumed to view his total
inventory as an integral package when deciding where to locate. For
convenience of exposition, the traditional fiction of the single-good firm
is retained in this paper, but it is stressed that the introduction of sets
of identical multiple-good firms, one set for each central-place function,
would not affect any of the conclusions.

The focus of this paper is the precise manner in which the Lischian
landscape is constructed. Lésch’s own description is less than complete,
and later writers, in the words of Tarrant, “have rather avoided the
problem by a bold statement of what is required” [18, p. 113]. The
discussion that follows goes beyond the point reached in previous
treatments and attempts to clarify several matters that have hitherto
remained obscure, notably the supposed existence of city-rich and
city-poor sectors in the finished landscape.

Let us assume a Loschian environment [ 11] in which individual farms
are the Dirichlet regions of their respective farmsteads. Let the lattice
of farmstead points be denoted by L(1). The complete set of integers
Q denoting the sizes of each market area N is generated by the cosine
rule [3, 4, 18]. For example, let M and J in Figure 1 represent the
locations of two adjacent suppliers of the same good. Measuring from
M in terms of the distance between neighboring farmsteads, the point
J has the coordinates (2, 5), whence x = 2, y = 5, and

N=x%+2xy+ y2=239. (1)

In other words, MJ is the distance separating adjacent suppliers of a
good requiring 39 farms in its market area. It can be shown by elementary
geometry that this distance is V/39, or more generally that

D=dVN, (2)

Fic. 1. Reference Grid for a Portion of the Loschian Landscape
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where D is the distance between adjacent suppliers of a good requiring
N farms in its market area, and where d, here taken as unity, is the
distance between adjacent farmsteads.

If the point M is taken as a fixed origin, the 60-degree sector YMX
in Figure 1 represents an area whose features are repeated on the plain
every 60 degrees around M. This sector consists of two 30-degree
subsectors YMZ and XMZ, which are mirror images of each other. Thus
the point K, with coordinates (5, 2), is equal to the point J in its distance
from the origin at M. From the point of view of efficiently enumerating
all possible Loschian numbers, the constraint that x is less than or equal
to y serves to eliminate duplication of values by confining the enumeration
to the subsector YMZ. On the other hand, clarification of the concrete
geometrical features of the Loschian landscape requires that the existence
of both subsectors be recognized. Keeping the supplier at M fixed, |
and K are clearly alternative and competing locations for an adjacent
supplier of the good for which N = 39. A similar choice exists for any
other location of J not lying in the lines MY and MZ. The vexing question
of how to choose between these alternatives will be fully answered
as the discussion proceeds.

Since the market areas for the suppliers of any given good are identical
hexagons, the suppliers themselves form a regular triangular lattice. Just
as a farm is the Dirichlet region of its farmstead, so a market area
is the Dirichlet region of the supplier at its center. In this paper each
lattice of suppliers is denoted by L(N) where N, as noted above, is
the number of farms served by each supplier in the lattice. In Figure
1, for example, the points M and J define one possible set of locations
for L(39).

THE SUPERIMPOSITION OF MARKET AREA NETS

Except for the case of N =1 (taken to represent self-sufficiency at
each farmstead), every Loschian number identifies a permissible market
area hexagon which in turn defines the mesh size of a whole network
of market areas covering the entire plain. Lsch builds up his economic
landscape by assuming that each geometrically permissible tessellation
of market areas is appropriate for the supplying of one particular good.
Without loss of generality, the set of suppliers for any such good could
be replaced by a set of identical multiple-good firms, but single-good
firms are retained here for the sake of simplicity. Although there is
an infinity of Loschian numbers, the real world does not contain an
infinity of different goods, and Loésch [11, p. 135] assumes that the
number of different market area tessellations required for the model
is large but finite.

One lattice point in L(1) is arbitrarily selected to be the center of
one cell in every tessellation to be used; this point becomes by definition
a metropolis supplying every good in the economy. The various market
area nets are then superimposed on the plain in such a way that each
is centered on the chosen metropolitan point [ 11, pp. 124-30].
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It should be noted that it is indeed an assumption to regard each
possible market area as appropriate for just one good. One can conceive
of a situation in which certain market areas are suitable for several
goods, whereas others are not suitable for any goods at all. Losch was
aware of these possibilities, but he gave pride of place to a model in
which each permissible hexagonal tessellation is used once and once
only.

As successive market area nets are laid down, a regular pattern of
central places emerges by virtue of the fact that lattices of suppliers
of different goods coincide in space on the plain. It is the precise nature
of this spatial coincidence that has proved so elusive in the past. The
prevailing view, recently expressed by Tarrant [ 18], is that the solution
involves rotation of the nets about the central metropolis under two
simultaneous constraints: first, that the coincidence of suppliers be
maximized, and second that the finished product exhibit alternating
city-rich and city-poor sectors. For reasons that will become obvious,
let the question of city-rich and city-poor sectors be set aside until
the first constraint has been carefully examined.

At this juncture it is appropriate to introduce what Dacey [5, p. 116]
terms the “primitive function points” of a given lattice L(N)—the six
points in L(N) that lie closest to the central metropolis. Since the central
metropolis and any one primitive function point of L(N) completely
define the set of locations occupied by L(N) on the plain, attention
may be focused on maximizing the coincidence of the primitive function
points of successive lattices within a single 60-degree sector of the
economic landscape. Figure 2, details of which are now described, depicts
one possible result. For convenience, let P(N) denote a primitive function
point of the lattice L(N).

Beginning with the smallest market areas, the first primitive function
points entered on Figure 2 are P(3) and P(4), the coordinates of which
are respectively (1, 1) and (0, 2). In both cases only one answer is
possible. The point at (1, 1) is its own mirror image, and the placement
of P(4) at (0, 2) means that I.(4) also has a primitive function point
at (2, 0). In short, no rotation is possible for lattices L(3) and L(4).
Generalizing, it appears from Figure 2 and equation (1) that no rotation
is possible in the case of any lattice for which N is of the form x?
or 3x2 (where x is some integer). Actually this rule is not valid, but
nothing is lost by temporarily allowing it to stand. Cases in which
the rule does not hold are examined below.

The third primitive function point is P(7), which may be at (1, 2)
or at (2, 1). The choice, as will be justified below, is entirely arbitrary,
and Figure 2 shows P(7) at (1, 2). Note in passing that 7 is a prime
number of the form 6k + 1, where k is some integer.

Next in sequence come P(9) and P(12), for which rotation is impossible.
P(9)lies at (0, 3) and P(12) at (2, 2). Both of these locations are necessarily
in L(3), and P(12) is also necessarily in L(4). These facts, as will be
seen, are highly significant.

It would be tedious to continue this detailed presentation for very
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Fic. 2. One Possible Arrangement of Primitive Function Points Up to P(300). Dots
are farmstead locations, and M is the central metropolis. Each number shows the location
of the primitive function point of the lattice of that magnitude. Numbers lie to the right
of the points to which they refer.

long, but it must be carried a little further before all the essential features
of the procedure can be distilled. The introduction of P(21), in fact
introduces a new element. Here there is apparently a choice between
(1, 4) and (4, 1), but the earlier placement of P(7) at (1, 2) means that
(4, 1) lies in L(7) whereas (1, 4) does not. In the interest of maximizing
the coincidence of lattices, P(21) is therefore placed at (4, 1). Although
P(21) does not lie along the lines MY or MZ in Figure 2, 21 is not
a prime but a composite number with 3 and 7 as its prime factors.
Note that (4, 1) and (1, 4), the two possible locations for P(21), both
lie in L(3). With P(7) at (1, 2), as noted, L(7) includes (4, 1) but not
(1, 4); it perhaps does not come as a surprise to learn that L(7) would
include (1, 4), but not (4, 1), if P(7) were placed at (2, 1). This illustrates
a vital principle. In cases where P(N) does not lie along MY or MZ
(the subsector boundaries), the crucial question is whether or not N
is prime. If N is prime, P(N) may be placed above or below MZ at
will; and in all such cases, though this is an incidental fact, N is a
prime of the form 6k + 1. If N is composite, the placement of P(N)
is predetermined by the choice(s) made for the prime(s) of the form
6k + 1 by which N is divisible.

The smallest Loschian number divisible by two primes of the form
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TABLE 1
Coxncorpance oF L(7), L(13), axp L(91)

GRID COORDINATES OF Grip COORDINATES OF

INDEPENDENT LATTICES DEPENDENT LATTICE
P(7) P(13) P(S1)
1,2 1,3 6,5
1,2 3,1 1,9
2,1 1,3 9,1
2, 3,1 5,6

Source: caleulated by author.

6k + 1 is 91, the product of 7 and 13. P(91) has four possible locations,
namely (1, 9), (5, 6), (6, 5), and (9, 1). There are also four distinct
combinations for the disposition of P(7) and P(13), each of which has
two possible locations. Table 1 shows that there is a one-to-one concor-
dance between these two foursomes. In Figure 2, P(91) is shown at
(6, 5), the only location which falls in both L(7) and L(13) with P(7)
at (1, 2) and P(13) at (1, 3).

Given, for example, P(7) at (1, 2), the question of whether or not
L(7) includes (6, 5), or any other point, can of course be answered
graphically. Questions of this type, however, can also be answered rapidly
by numerical calculation. The method requires a knowledge of the
arithmetic of residues.

Continuing the construction of Figure 2, P(25) and P(27) lie on MY
and MZ respectively and involve no rotation. P(28) is predetermined
by P(7), and must be at (2, 4) rather than (4, 2). P(31) involves an
arbitrary choice between (1, 5) and (5, 1). And so the process continues.

Tarrant [18, pp. 116-17] uses the term “symmetric” to refer to lattices
whose primitive function points lie along MY and MZ in Figure 2;
other lattices are termed “asymmetric.” Actually all lattices are equally
symmetrical about M, but the terminology is not the point at issue.
Tarrant goes on to divide the asymmetric lattices into two types. First,
there are those for which N is not divisible by the N-value of any
smaller asymmetric lattice; these are the same as lattices for which N
is a prime of the form 6k + 1. Secondly, there are those for which N
is a multiple of the N-value(s) of one or more smaller asymmetric lattices;
these are the same as lattices for which N is not prime and for which
P(N) does not lie on MY or MZ. Tarrant then claims that the primitive
function points of the first type of asymmetric lattice must all lie in
the same subsector (that is, all above or all below MZ in Figure 2),
and he further claims that the primitive function points of the second
type of lattice obey an “even or odd” rule as follows: if N is an even
multiple of a smaller asymmetric N-value, P(N) must lie in the same
subsector as the primitive function point of the smaller lattice, and
in the opposite subsector if N is an odd multiple. Both of these claims
are false. For lattices in which N is a prime of the form 6k + 1, the
choice between subsectors is in fact completely independent in every
case (see Table 1; also Tables 2 and 3, explained below). The second

J



John U. Marshall | 7

TABLE 2
ConcorDaxce OF Lattices DepexDENT oN L(7), L(13), axp L(19)

GaID COORDINATES OF GRID COORDINATES OF

INDEPENDENT LATTICES DEPEADENT LATTICES
P(7) P(13) P(19) P(91) P(133) P(247) P(1729)
1,2 1,3 2,3 6,5 9,4 11,7 40, 3
1,2 1,3 3,2 6,5 11, 1 14, 3 8, 37
1,2 3,1 2,3 1,9 9, 4 3, 14 23, 25
2,1 1,3 2,3 9,1 1,11 11,7 15, 32
1,2 3,1 3,2 1,9 11,1 7,11 32, 15
2,1 1,3 3,2 9,1 4,9 14, 3 25, 23
2,1 3,1 2,3 5,6 1,11 3,14 37,8
2,1 3,1 3,2 3,6 4,9 7,11 3, 40

Source: calculated by author.

claim is refuted by numerous examples beginning with L(84): 84 is
an even multiple of 7, but P(84) must go in the opposite subsector
to P(7) in order to maximize the coincidence of these two lattices. Figure
2 shows P(7) at (1, 2) and P(84) accordingly at (8, 2) rather than (2,
8). Similarly, the number 175 is an odd multiple of 7, but P(175) must
go in the same subsector as P(7) to maximize coincidence. Other examples
contradicting Tarrant’s rule include P(156), P(228), P(325), and P(847).

The freedom of choice that obtains when N is a prime of the form
6k + 1 has already been illustrated on a small scale by Table 1. A more
complex example, involving the products of the primes 7, 13, and 19,
is summarized in Table 2. Each of P(91), P(133), and P(247) has four
possible locations. In every case, each of the four possible locations
gets used twice in accommodating the eight possible positional combina-
tions of P(7), P(13), and P(19), but the pattern is such that no two
sets of locations for P(91), P(133), and P(247) are alike. Finally, P(1729)
has eight possible locations, and these eight locations bear a precise
one-to-one relationship with the eight positional combinations of P(7),
P(13), and P(19), and with the eight unique sets of locations for P(91),
P(133), and P(247). In short, the positions of the four dependent lattices
are uniquely determined once the positions of the three independent
lattices have been chosen.

Table 3 gives one further example based on the first four primes
of the form 6k + 1. In this instance, the six lattices involving pairwise
combinations of these four primes have been omitted to keep the table
of manageable size. Of the five dependent lattices shown, the first four
each involve three of the four primes, and their locations are governed,
in the manner of Table 2, by the positions adopted for the primes in
question. Finally, P(53599) has no fewer than sixteen possible locations,
each of which is associated with one, and only one, of the sixteen
positional combinations of P(7), P(13), P(19), and P(31). Quite apart
from its significance in relation to the construction of the Lodschian
landscape, the geometrical concordance summarized in these tables is
a thing of great beauty.
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TABLE 3
ConcorDANCE OF LaTrices DepENDENT O L(7), L(13), L(19), axp L(31)
Grin COORDINATES OF GRID COORDINATES OF
INDEPENDENT LATTICES DEPENDENT LATTICES

P(7} P(13) P(19} P(31) P(1729) P(2821) P{4123) P(7657) P(53599)
1,2 1,3 2,3 1,5 40, 3 41, 19 58, 11 73, 24 25, 218
2,1 1,3 2.3 L5 15, 32 4,51 17,54 73,24 122, 145
1,2 3,1 2,3 1,5 23, 25 15, 44 38, 11 32,67 163, 102
1,2 1,3 3,2 1,5 8, 37 41, 19 6, 61 87, 1 85, 177
L2 L3 2,3 5,1 40, 3 25,36 41,33 48,53 197,58
2.1 3,1 2,3 1,5 37,8 36, 25 17, 54 32, 67 230, 3
2,1 L3 3,2 1,5 25, 23 4,51 33,41 87,1 173, 90
2,1 1,3 2,3 5,1 15, 32 44,15 61,6 48, 53 43, 207
1,2 3,1 3,2 1,5 32, 15 15, 44 6, 61 53, 48 207, 43
Lo 3,1 2,3 5,1 23,25 51,4 41, 33 1,87 90, 173
1,2 1,3 3,2 5,1 8, 37 25, 36 54, 17 67, 32 3, 230
2,1 3,1 3,2 1,5 3, 40 36, 25 33, 41 53, 48 58, 197
2,1 3,1 2,3 5,1 37,8 19, 41 61, 6 1, 87 177, 85
2,1 1,3 3,2 5,1 25, 23 44,15 11, 58 67, 32 102, 163
1,2 3,1 3,2 5,1 32,15 51,4 54, 17 24,73 145, 122
2,1 3,1 3,2 5,1 3, 40 19, 41 11, 58 24,73 218, 25

Source: caleulated by author.

The important practical point revealed by the tables is not that the
positioning of the dependent lattices is rigidly controlled, but rather
that there is always a solution, regardless of the positions selected for
the independent lattices representing primes of the form 6k + 1. Even
if the solution in any particular case is unique, it nevertheless exists,
and therefore all primitive function points where N is a prime of the
form 6k + 1 may be positioned completely independently of one another.
It is this independence which invalidates Tarrant’s claim that all such
points must be placed in the same subsector.

The existence of alternative positions, within a single 30-degree
subsector, for the primitive function points of certain lattices is a matter
of some interest in its own right. The smallest lattice of this type is
L(49), for which two positions are possible: P(49) may be at (0, 7)
or at (3, 5). These two positions represent unequivalent solutions of
the Diophantine equation

N =x2+ xy + y2.

By transposition of the terms x and vy, the equivalent solutions (7, 0)
and (5, 3) are obtained. The smallest lattices having three, four, and
five unequivalent solutions respectively are L(637), L(1729), and L.(8281).
The lattice L(53599), featured in Table 3, has eight unequivalent solutions
and thus sixteen possible positions for its primitive function point within
a 60-degree sector. The occurrence of unequivalent solutions is by no
means a rarity, for 30.4 percent of all lattices up to L(10000) involve
two or more unequivalent solutions. The existence of unequivalent
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solutions to Diophantine equations is a topic of interest in number theory,
and the question of unequivalent solutions in the case of Léschian lattices
may be answered by referring to Bolker’s rule [2, pp. 114-21].

It sometimes occurs that a lattice with two or more unequivalent
solutions has one solution of the form (0, n) or (n, n). The lattices
L{49) and L(147) are cases in point: P(49) may be at (0, 7) or (3, 5),
and P(147) may be at (7, 7) or (2, 11). It is these cases, and others
like them, which deny validity to the apparent rule that rotation is
impossible for any lattice in which N is of the form x2 or 3x2. In all
such cases, however, maximization of coincidence with other lattices
is guaranteed if a solution of the form (0, n) or (n, n) is adopted. For
the sake of simplicity, therefore, all P(N) where N is of the form x?
may be taken as lying on MY in Figure 2, and all P(N) where N is
of the form 3x2 may be taken as lying on MZ.

When N is not of the form x2 or 3x2, P(N) does not lie on MY
or MZ, and the important question then is whether or not N is prime.
If Nis prime, P(N) may be placed either above or below MZ at will:
as the tables illustrate, the existence of unequivalent solutions for many
lattices provides just the kind of flexibility that Tarrant denies. If N
is not prime, then maximization of coincidence of lattices requires that
the subsector containing P(N) be determined by the prior placement
of primes by which N is divisible.

With maximum coincidence of lattices achieved, the Loschian land-
scape obeys the following simple rules:

(A) Thepoints of coincidence of any set of lattices L(a), L(b), L(c), . . .,
L(j) define the lattice L(t) where t is the least common multiple of
abc, ..., ]

(B) A farmstead location which is a lattice point in L(y) is also a
lattice point in all L(x) where x is any Loschian number that exactly
divides y.

To take a simple example, the first rule states that L(3) and L(4)
coincide on the plain to form L(12), 12 being the least common multiple
of 3 and 4. The second rule states that L(12) exists only as the points
of coincidence of L(3) and L(4). In like fashion, L(3), L(4), and L(9)
coincide to form L(36), but each point in L(36) is also necessarily a
point in L(12). Similarily, L(7) and L(39) coincide to form L(273),
each point in which is also a point in L(3), L(13), L(21), and L(91).
These two rules represent a concrete application of the fact that the
least common multiple of any two or more Loschian numbers is always
itself a Loschian number [12].

Finally, it must be stressed that Figure 2 shows only one of the many
possible ways in which the 92 primitive function points up to P(300)
may be arranged. Alternative arrangements arise because each lattice
in which N is a prime of the form 6k + 1 involves an arbitrary choice
between the upper and lower subsectors. (And this disregards, as noted
above, the fact that unequivalent solutions do exist for certain cases
in which N is of the form x2 or 3x2.) There are 28 primes of the form
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6k + 1 up to P(300), and hence there are a staggering 22% distinct ways
_in which Figure 2 may be drawn. The drawing given here lies at one
end of this multitude of possibilities, for all primes of the form 6k + 1
have been placed in the upper subsector. The only primitive function
points appearing in the lower subsector of Figure 2 are those which
must be there in order to maximize the coincidence of lattices.

Crry-RicH anp Crry-Poor SECTORS

The matter of city-rich and city-poor sectors is best approached by
first considering a single lattice L.(N) where N is any Loschian number.
Let L(N) be centered on the chosen central metropolis in the usual
way. Since L(N) is a perfect triangular lattice—that is, the density of
points is completely constant throughout the extent of the lattice—it
is obvious that the proportion of farmstead points that are members
of L(N) is constant in all 30-degree sectors radiating from the central
metropolis, regardless of their orientation. Now consider two lattices
L(i) and L(j). Placing these two lattices together on the plain creates
three types of central place: first, those supplying only the good for
which N = i; second, those supplying only the good for which N = j;
and third, those supplying both of these goods. From what has been
said in the previous section, it is evident that the central places supplying
both goods form the perfect triangular lattice L(k), where k is the least
common multiple of i and j. For any 30-degree sector, the proportion
of farmstead points that are members of L(k) is therefore constant,
and it follows that the same is true for central places supplying each
good singly. Extension of this argument by the addition of further lattices
leads immediately to the conclusion that every possible 30-degree sector
contains exactly the same assortment of combinations of suppliers of
different goods. Hence there are no city-rich and city-poor sectors.

The following remarks may serve to clarify this somewhat surprising
conclusion. Given a specific combination of goods, central places
supplying precisely these goods almost never form a complete triangular
lattice in their own right. For illustration, consider the simple case of
a two-good economy using lattices L.(7) and L(13). The choice of L(7)
and L(13) instead of, say, L(3) and L(4) is deliberate, for it is the
behavior of the so-called asymmetric lattices that is generally held to
give rise to city-rich and city-poor sectors. Let G(7) denote the set of
central places supplying only the good that uses lattice L(7), and let
G(13) denote the set of central places supplying only the good that
uses lattice L(13); also, let G(7, 13) denote the set of central places
supplying both goods. It is known that the points of coincidence of
L(7) and L(13) create a lattice having the form L(91), and therefore,
given that the economy is limited to two goods, the G(7, 13) set of
central places is certainly a perfect triangular lattice. On the other hand,
neither the G(7) places nor the G(13) places form a complete lattice
in their own right. The G(7) places, for instance, have the pattern of
an L(7) lattice disfigured by “holes” corresponding to the occurrence
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of the L(91) lattice of G(7, 13) places. The same holes destroy the
perfection of the pattern formed by the G(13) places. The important
feature, however, is that the holes themselves form a perfect lattice.
Hence all 30-degree sectors randomly positioned around the central
metropolis contain identical proportions of G(7, 13) places, G(7) places,
and G(13) places. No sectoral differentiation exists.

In this simple example the metropolis provides only two goods, and
all G(7, 13) places are similarly equipped. In short each G(7, 13) place
is a metropolis. Putting this another way, the only set of identically
endowed places forming a complete lattice is the set of metropolises:
that is, those places which provide every good in the economy. This
statement remains true no matter how many different goods the economy
is assumed to contain. Below the metropolitan level, each specific
combination of goods short of the full array is supplied by a set of
G(i, j,..., n) places which do not form a complete triangular lattice.
Nevertheless, the spatial pattern formed by each set of G(i, j,..., n)
nonmetropolitan places is radially symmetrical with respect to each
metropolis. Both (a) the proportion of farmstead locations which become
central places, and (b) the proportion of central places offering any
given combination of goods, are constant in all 30-degree sectors.

One escape hatch remains to be sealed. Up to this point, the discussion
has proceeded on the understanding that the coincidence of lattices
has been maximized. Can city-rich and city-poor sectors be made to
appear if maximizing the coincidence of lattices is deliberately violated?
The answer is no. For illustration, consider the coincidence of L(7)
and L(49). Figure 2 maximizes the coincidence of these two lattices
by placing P(7) at (1, 2) and P(49) at (0, 7). But suppose that P(49)
were perversely placed at (3, 5) instead of (0, 7). With P(7) at (1, 2),
the lattice L(7) does not include (3, 5), and thus the maximization of
coincidence has clearly been violated, The question naturally arises as
to where L(7) and L(49) will now coincide. It turns out that coincidence
occurs at (14, 7), this point incidentally being one of the four possible
locations for P(343). Returning to the notion of a two-good economy,
it is seen that L(7) and L(49) give rise, as in the earlier example, to
three types of central place, namely G(7), G(49), and G(7, 49). Since
maximization of coincidence has deliberately been avoided, the G(7,
49) places are distributed in the form of L(343) rather than the form
of L(49); but nevertheless they still form a complete triangular lattice.
In general, whether or not the coincidence of lattices is maximized,
the points of coincidence of any two lattices, and hence the points
of coincidence of any number of lattices, themselves form a perfect
triangular lattice. The argument of the earlier part of this section therefore
remains valid. City-rich and city-poor sectors do not exist whether the
coincidence of lattices is maximized or not.

Denial of the existence of alternating city-rich and city-poor sectors
in the Loschian landscape will come as a shock to many readers. The
supposed sectors are very much an established part of the Lodschian
litany, and are faithfully described both in introductory texts [6, p.
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292; 10, pp. 250-51; 20, pp. 206-8] and in advanced studies [5, p.
121; 15, p. 572; 16, pp. 67-69]. Nevertheless the argument presented
above seems incontrovertible. Diagrammatic corroboration is easy enough
to produce, but unfortunately lacks clarity at any size capable of
reproduction on the printed page. Doubters are urged to glue together
a few square yards of isometric graph paper and set to work.

It is tempting to speculate on the reasons why Losch wrongly believed
in the existence of city-rich and city-poor sectors. One possibility is
that he concentrated his attention too strongly on the area in the immediate
vicinity of the central metropolis. In this restricted zone an apparently
significant difference between sectors can be made to appear by appro-
priate positioning of primitive function points. Dacey [5, p. 121] seems
to make the same error when he writes that “Losch obtains city-rich
and city-poor sectors simply by forcing all primitive function points
to cluster within 30-degree sectors.” Certainly one may arrange things
so that all primitive function points fall in the same set of alternate
30-degree sectors, though in some instances, such as P(21), P(39), and
P(57), this will violate the maximization of the coincidence of lattices
(see Figure 2). Even if this is done, however, the proportion of farmstead
locations supplying any given combination of goods will still be uniform
in all sectors. The primitive function points, in short, are merely the
tips of icebergs.

Inthe past, the alternating city-rich and city-poor sectors in the Léschian
landscape have been used to account for variations in density reported
to occur around such cities as Indianapolis [13] and Toledo [11, pp.
125, 438-39]. It is now apparent that some other source of explanation
must be found. Parr [14, p. 206], although he does not question the
existence of city-rich and city-poor sectors in the model, wisely suggests
that the occurrence of sectoral variations in development around real
cities is “probably related to the long-term advantages conferred upon
locations along or near intermetropolitan arteries.” The corridor theory
developed by Russwurm [17] and Whebell [19] gives support to this
view.

CONCLUSION

The aim of this paper has been to clarify the manner in which the
Léschian economic landscape is constructed. Construction has hitherto
been thought to proceed under two simultaneous constraints: first, that
coincidence of suppliers be maximized, and secondly that the finished
landscape exhibit alternating city-rich and city-poor sectors. It is now
seen that the second constraint is false. City-rich and city-poor sectors
cannot be made to appear whether the coincidence of suppliers is
maximized or not. Construction is therefore free to proceed under the
single constraint that coincidence of suppliers be maximized.

Each Loschian number N represents a permissible market area which
forms the basis of a lattice L(N) of identical suppliers. Systematic
construction of the landscape is most readily achieved by concentrating
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attention on the placement of each lattice’s primitive function point
P(N) within a single 60-degree sector around the arbitrary central
metropolis M (see Figure 2). If N is of the form x2 or 3x2%, P(N) is
located along the boundary of a 30-degree subsector (that is, along MY
or MZ in Figure 2); for these lattices, rotation is usually impossible
and never necessary. Cases in which N is not of the form x2 or 3x®
are of two types. In the first type, N is a prime of the form 6k + 1,
and P(N) may be located in either of the two 30-degree subsectors
at will. In the second type, N is a composite number, and the choice
of subsector for P(N) is governed by the prior choices made for all
primes of the first type by which N is divisible (as illustrated by Tables
1, 2, and 3). Construction of the landscape according to these precepts
ensures that maximum coincidence of suppliers is achieved.
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