The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002965 Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).
(Formerly M0671)
28

%I M0671 #143 Sep 08 2022 08:44:31

%S 0,1,1,1,2,3,5,7,12,17,29,41,70,99,169,239,408,577,985,1393,2378,3363,

%T 5741,8119,13860,19601,33461,47321,80782,114243,195025,275807,470832,

%U 665857,1136689,1607521,2744210,3880899,6625109,9369319,15994428,22619537

%N Interleave denominators (A000129) and numerators (A001333) of convergents to sqrt(2).

%C Denominators of Farey fraction approximations to sqrt(2). The fractions are 1/0, 0/1, 1/1, 2/1, 3/2, 4/3, 7/5, 10/7, 17/12, .... See A082766(n+2) or A119016 for the numerators. "Add" (meaning here to add the numerators and add the denominators, not to add the fractions) 1/0 to 1/1 to make the fraction bigger: 2/1. Now 2/1 is too big, so add 1/1 to make the fraction smaller: 3/2, 4/3. Now 4/3 is too small, so add 3/2 to make the fraction bigger: 7/5, 10/7, ... Because the continued fraction for sqrt(2) is all 2's, it will always take exactly two terms here to switch from a number that's bigger than sqrt(2) to one that's less. A097545/A097546 gives the similar sequence for Pi. A119014/A119015 gives the similar sequence for e. - _Joshua Zucker_, May 09 2006

%C The principal and intermediate convergents to 2^(1/2) begin with 1/1, 3/2 4/3, 7/5, 10/7; essentially, numerators=A143607, denominators=A002965. - _Clark Kimberling_, Aug 27 2008

%C ((a(2n)*a(2n+1))^2 is a triangular square. - _Hugh Darwen_, Feb 23 2012

%C a(2n) are the interleaved values of m such that 2*m^2+1 and 2*m^2-1 are squares, respectively; a(2n+1) are the interleaved values of their corresponding integer square roots. - _Richard R. Forberg_, Aug 19 2013

%C Coefficients of (sqrt(2)+1)^n are a(2n)*sqrt(2)+a(2n+1). - _John Molokach_, Nov 29 2015

%C Apart from the first two terms, this is the sequence of denominators of the convergents of the continued fraction expansion sqrt(2) = 1/(1 - 1/(2 + 1/(1 - 1/(2 + 1/(1 - ....))))). - _Peter Bala_, Feb 02 2017

%C Limit_{n->infinity} a(2n+1)/a(2n) = sqrt(2); lim_{n->infinity} a(2n)/a(2n-1) = (2+sqrt(2))/2. - _Ctibor O. Zizka_, Oct 28 2018

%D C. Brezinski, History of Continued Fractions and Padé Approximants. Springer-Verlag, Berlin, 1991, p. 24.

%D Jay Kappraff, Musical Proportions at the Basis of Systems of Architectural Proportion both Ancient and Modern, in Volume I of K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to the Future, DOI 10.1007/978-3-319-00143-2_27, Springer International Publishing Switzerland 2015. See Eq. 32.7.

%D Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D Guelena Strehler, Chess Fractal, April 2016, p. 24.

%H T. D. Noe, <a href="/A002965/b002965.txt">Table of n, a(n) for n = 0..500</a>

%H Damanvir Singh Binner, <a href="https://arxiv.org/abs/2112.15474">Proofs of Chappelon and Alfonsín Conjectures On Square Frobenius Numbers and its Relationship to Simultaneous Pell's Equations</a>, arXiv:2112.15474 [math.NT], 2021.

%H Jonathan Chappelon and Jorge Luis Ramírez Alfonsín, <a href="https://arxiv.org/abs/2006.14219">The Square Frobenius Number</a>, arXiv:2006.14219 [math.NT], 2020.

%H H. S. M. Coxeter, <a href="http://dx.doi.org/10.1016/0021-8693(72)90096-8">The role of intermediate convergents in Tait's explanation for phyllotaxis</a>, J. Algebra 20 (1972), 167-175.

%H Clark Kimberling, <a href="http://dx.doi.org/10.1007/s000170050020">Best lower and upper approximates to irrational numbers</a>, Elemente der Mathematik, 52 (1997) 122-126.

%H Pierre Lamothe, <a href="http://web.archive.org/web/20080624084445/http://www.aei.ca/~plamothe/tangents.htm">En marge du problème des cercles tangents</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Dave Rusin, <a href="http://www.math.niu.edu/~rusin/known-math/99/farey">Farey fractions on sci.math</a> [Broken link]

%H Dave Rusin, <a href="/A002965/a002965.txt">Farey fractions on sci.math</a> [Cached copy]

%H K. Williams, <a href="http://dx.doi.org/10.1007/BF03024279">The sacred cult revisited: the pavement of the baptistery of San Giovanni, Florence</a>, Math. Intellig., 16 (No. 2, 1994), 18-24.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1).

%F a(n) = 2*a(n-2) + a(n-4) if n>3; a(0)=0, a(1)=a(2)=a(3)=1.

%F a(2*n) = a(2*n-1) + a(2*n-2) and a(2*n+1) = 2*a(2*n) - a(2*n-1).

%F G.f.: (x+x^2-x^3)/(1-2*x^2-x^4).

%F a(0)=0, a(1)=1, a(n) = a(n-1) + a(2*[(n-2)/2]). - _Franklin T. Adams-Watters_, Jan 31 2006

%F For n > 0, a(2*n) = a(2*n-1) + a(2*n-2) and a(2*n+1) = a(2*n) + a(2*n-2). - _Jon Perry_, Sep 12 2012

%F a(n) = (((sqrt(2) - 2)*(-1)^n + 2 + sqrt(2))*(1 + sqrt(2))^(floor(n/2)) - ((2 + sqrt(2))*(-1)^n -2 + sqrt(2))*(1 - sqrt(2))^(floor(n/2)))/8. - _Ilya Gutkovskiy_, Jul 18 2016

%F a(n) = a(n-1) + a(n-2-(n mod 2)); a(0)=0, a(1)=1. - _Ctibor O. Zizka_, Oct 28 2018

%e The convergents are rational numbers given by the recurrence relation p/q -> (p + 2*q)/(p + q). Starting with 1/1, the next three convergents are (1 + 2*1)/(1 + 1) = 3/2, (3 + 2*2)/(3 + 2) = 7/5, and (7 + 2*5)/(7 + 5) = 17/12. The sequence puts the denominator first, so a(2) through a(9) are 1, 1, 2, 3, 5, 7, 12, 17. - _Michael B. Porter_, Jul 18 2016

%p A002965 := proc(n) option remember; if n <= 0 then 0; elif n <= 3 then 1; else 2*A002965(n-2)+A002965(n-4); fi; end;

%p A002965:=-(1+2*z+z**2+z**3)/(-1+2*z**2+z**4); # conjectured by _Simon Plouffe_ in his 1992 dissertation; gives sequence except for two leading terms

%t LinearRecurrence[{0, 2, 0, 1}, {0, 1, 1, 1}, 42] (* _Vladimir Joseph Stephan Orlovsky_, Feb 13 2012 *)

%t With[{c=Convergents[Sqrt[2],20]},Join[{0,1},Riffle[Denominator[c], Numerator[c]]]] (* _Harvey P. Dale_, Oct 03 2012 *)

%o (PARI) a(n)=if(n<4,n>0,2*a(n-2)+a(n-4))

%o (PARI) x='x+O('x^100); concat(0, Vec((x+x^2-x^3)/(1-2*x^2-x^4))) \\ _Altug Alkan_, Dec 04 2015

%o (JavaScript)

%o a=new Array(); a[0]=0; a[1]=1;

%o for (i=2;i<50;i+=2) {a[i]=a[i-1]+a[i-2];a[i+1]=a[i]+a[i-2];}

%o document.write(a); // _Jon Perry_, Sep 12 2012

%o (Haskell)

%o import Data.List (transpose)

%o a002965 n = a002965_list !! n

%o a002965_list = concat $ transpose [a000129_list, a001333_list]

%o -- _Reinhard Zumkeller_, Jan 01 2014

%o (Magma) I:=[0,1,1,1]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Nov 30 2015

%o (GAP) a:=[0,1];; for n in [3..45] do a[n]:=a[n-1]+a[n-2-((n-1) mod 2)]; od; a; # _Muniru A Asiru_, Oct 28 2018

%Y Cf. A000129(n) = a(2n), A001333(n) = a(2n+1).

%Y Cf. A001109, A155046.

%K nonn,easy,nice,frac

%O 0,5

%A _N. J. A. Sloane_

%E Thanks to _Michael Somos_ for several comments which improved this entry.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 09:54 EDT 2024. Contains 372620 sequences. (Running on oeis4.)