The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002162 Decimal expansion of the natural logarithm of 2.
(Formerly M4074 N1689)
197

%I M4074 N1689 #231 Apr 10 2024 09:59:21

%S 6,9,3,1,4,7,1,8,0,5,5,9,9,4,5,3,0,9,4,1,7,2,3,2,1,2,1,4,5,8,1,7,6,5,

%T 6,8,0,7,5,5,0,0,1,3,4,3,6,0,2,5,5,2,5,4,1,2,0,6,8,0,0,0,9,4,9,3,3,9,

%U 3,6,2,1,9,6,9,6,9,4,7,1,5,6,0,5,8,6,3,3,2,6,9,9,6,4,1,8,6,8,7

%N Decimal expansion of the natural logarithm of 2.

%C Newton calculated the first 16 terms of this sequence.

%C Area bounded by y = tan x, y = cot x, y = 0. - _Clark Kimberling_, Jun 26 2020

%D G. Boros and V. H. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, 2004.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Sections 1.3.3 and 6.2.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harry J. Smith, <a href="/A002162/b002162.txt">Table of n, a(n) for n = 0..20000</a>

%H D. H. Bailey and J. M. Borwein, <a href="http://www.ams.org/notices/200505/fea-borwein.pdf">Experimental Mathematics: Examples, Methods and Implications</a>, Notices of the AMS, May 2005, Volume 52, Issue 5.

%H Peter Bala, <a href="/A002117/a002117.pdf">New series for old functions</a>

%H J. M. Borwein, P. B. Borwein and K. Dilcher, <a href="http://www.jstor.org/stable/2324715">Pi, Euler numbers and asymptotic expansions</a>, Amer. Math. Monthly, 96 (1989), 681-687.

%H Paul Cooijmans, <a href="http://web.archive.org/web/20050302174449/http://members.chello.nl/p.cooijmans/gliaweb/tests/odds.html">Odds</a>.

%H X. Gourdon and P. Sebah, <a href="http://numbers.computation.free.fr/Constants/Log2/log2.html">The logarithm constant:log(2)</a>

%H M. Kontsevich and D. Zagier, <a href="http://www.ihes.fr/~maxim/TEXTS/Periods.pdf">Periods</a>, pp. 4-5.

%H Mathematical Reflections, <a href="https://www.awesomemath.org/wp-pdf-files/math-reflections/mr-2016-04/mr_3_2016_solutions.pdf">Solution to Problem U376</a>, Issue 4, 2016, p 17.

%H Isaac Newton, <a href="http://www.archive.org/details/methodoffluxions00newt">The method of fluxions and infinite series; with its application to the geometry of curve-lines</a>, 1736; see p. 96.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=DVn7DL0lxBo">an alternating floor sum.</a>, YouTube video, 2020.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=aQBdKtOgkeg">A wonderful limit from the 2011 Virginia Tech Regional Math Competition</a>, YouTube video, 2022.

%H Simon Plouffe, <a href="https://web.archive.org/web/20150911212957/http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap58.html">log(2), natural logarithm of 2 to 2000 places</a>

%H S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/question/q260.htm">Question 260</a>, J. Ind. Math. Soc., III, p. 43.

%H Albert Stadler, <a href="https://cms.math.ca/wp-content/uploads/crux-pdfs/CRUXv36n6.pdf">Problem 3567</a>, Crux Mathematicorum, Vol. 36 (Oct. 2010), p. 396; Oliver Geupel, <a href="https://smc.math.ca/wp-content/uploads/crux-pdfs/CRUXv37n6.pdf">Solution</a>, Crux Mathematicorum, Vol. 37 (Oct. 2011), pp. 400-401.

%H D. W. Sweeney, <a href="http://dx.doi.org/10.1090/S0025-5718-1963-0160308-X">On the computation of Euler's constant</a>, Math. Comp., 17 (1963), 170-178.

%H Horace S. Uhler, <a href="https://doi.org/10.1073/pnas.26.3.205">Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17</a>, Proc. Nat. Acad. Sci. U. S. A. 26, (1940). 205-212.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NaturalLogarithmof2.html">Natural Logarithm of 2</a>, <a href="http://mathworld.wolfram.com/Masser-GramainConstant.html">Masser-Gramain Constant</a>, <a href="http://mathworld.wolfram.com/LogarithmicIntegral.html">Logarithmic Integral</a>, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Natural_logarithm_of_2">Natural logarithm of 2</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Period_(algebraic_geometry)">Period (algebraic geometry)</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F log(2) = Sum_{k>=1} 1/(k*2^k) = Sum_{j>=1} (-1)^(j+1)/j.

%F log(2) = Integral_{t=0..1} dt/(1+t).

%F log(2) = (2/3) * (1 + Sum_{k>=1} 2/((4*k)^3-4*k)) (Ramanujan).

%F log(2) = 4*Sum_{k>=0} (3-2*sqrt(2))^(2*k+1)/(2*k+1) (Y. Luke). - _R. J. Mathar_, Jul 13 2006

%F log(2) = 1 - (1/2)*Sum_{k>=1} 1/(k*(2*k+1)). - _Jaume Oliver Lafont_, Jan 06 2009, Jan 08 2009

%F log(2) = 4*Sum_{k>=0} 1/((4*k+1)*(4*k+2)*(4*k+3)). - _Jaume Oliver Lafont_, Jan 08 2009

%F log(2) = 7/12 + 24*Sum_{k>=1} 1/(A052787(k+4)*A000079(k)). - _R. J. Mathar_, Jan 23 2009

%F From _Alexander R. Povolotsky_, Jul 04 2009: (Start)

%F log(2) = (1/4)*(3 - Sum_{n>=1} 1/(n*(n+1)*(2*n+1))).

%F log(2) = (230166911/9240 - Sum_{k>=1} (1/2)^k*(11/k + 10/(k+1) + 9/(k+2) + 8/(k+3) + 7/(k+4) + 6/(k+5) - 6/(k+7) - 7/(k+8) - 8/(k+9) - 9/(k+10) - 10/(k+11)))/35917. (End)

%F log(2) = A052882/A000670. - _Mats Granvik_, Aug 10 2009

%F From log(1-x-x^2) at x=1/2, log(2) = (1/2)*Sum_{k>=1} L(k)/(k*2^k), where L(n) is the n-th Lucas number (A000032). - _Jaume Oliver Lafont_, Oct 24 2009

%F log(2) = Sum_{k>=1} 1/(cos(k*Pi/3)*k*2^k) (cf. A176900). - _Jaume Oliver Lafont_, Apr 29 2010

%F log(2) = (Sum_{n>=1} 1/(n^2*(n+1)^2*(2*n+1)) + 11)/16. - _Alexander R. Povolotsky_, Jan 13 2011

%F log(2) = (Sum_{n>=1} (2*n+1)/(Sum_{k=1..n} k^2)^2))+396)/576. - _Alexander R. Povolotsky_, Jan 14 2011

%F From _Alexander R. Povolotsky_, Dec 16 2008: (Start)

%F log(2) = 105*(Sum_{n>=1} 1/(2*n*(2*n+1)*(2*n+3)*(2*n+5)*(2*n+7)))-319/44100).

%F log(2) = 319/420 - (3/2)*Sum_{n>=1} 1/(6*n^2+39*n+63)). (End)

%F log(2) = Sum_{k>=1} A191907(2,k)/k. - _Mats Granvik_, Jun 19 2011

%F log(2) = Integral_{x=0..oo} 1/(1 + e^x) dx. - _Jean-François Alcover_, Mar 21 2013

%F log(2) = lim_{s->1} zeta(s)*(1-1/2^(s-1)). - _Mats Granvik_, Jun 18 2013

%F From _Peter Bala_, Dec 10 2013: (Start)

%F log(2) = 2*Sum_{n>=1} 1/( n*A008288(n-1,n-1)*A008288(n,n) ), a result due to Burnside.

%F log(2) = (1/3)*Sum_{n >= 0} (5*n+4)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(1/2)^n = (1/12)*Sum_{n >= 0} (28*n+17)/( (3*n+1)*(3*n+2)*C(3*n,n) )*(-1/4)^n.

%F log(2) = (3/16)*Sum_{n >= 0} (14*n+11)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(1/4)^n = (1/12)*Sum_{n >= 0} (34*n+25)/( (4*n+1)*(4*n+3)*C(4*n,2*n) )*(-1/18)^n. For more series of this type see the Bala link.

%F See A142979 for series acceleration formulas for log(2) obtained from the Mercator series log(2) = Sum_{n >= 1} (-1)^(n+1)/n. See A142992 for series for log(2) related to the root lattice C_n. (End)

%F log(2) = lim_{n->oo} Sum_{k=2^n..2^(n+1)-1} 1/k. - _Richard R. Forberg_, Aug 16 2014

%F From _Peter Bala_, Feb 03: (Start)

%F log(2) = (2/3)*Sum_{k >= 0} 1/((2*k + 1)*9^k).

%F Define a pair of integer sequences A(n) = 9^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} 1/((2*k + 1)*9^k). Both satisfy the same second-order recurrence equation u(n) = (40*n + 16)*u(n-1) - 36*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion log(2) = (2/3)*(1 + 2/(54 - 36*3^2/(96 - 36*5^2/(136 - ... - 36*(2*n - 1)^2/((40*n + 16) - ... ))))). Cf. A002391, A073000 and A105531 for similar expansions. (End)

%F log(2) = Sum_{n>=1} (Zeta(2*n)-1)/n. - _Vaclav Kotesovec_, Dec 11 2015

%F From _Peter Bala_, Oct 30 2016: (Start)

%F Asymptotic expansions:

%F for N even, log(2) - Sum_{k = 1..N/2} (-1)^(k-1)/k ~ (-1)^(N/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1. See Borwein et al., Theorem 1 (b);

%F for N odd, log(2) - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/k ~ (-1)^((N-1)/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), by Borwein et al., Lemma 2 with f(x) := 1/(x + 1/2), h := 1/2 and then set x = (N - 1)/2, where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. (End)

%F log(2) = lim_{n->oo} Sum_{k=1..n} sin(1/(n+k)). See Mathematical Reflections link. - _Michel Marcus_, Jan 07 2017

%F log(2) = Sum_{n>=1} (A006519(n) / ( (1+2^A006519(n)) * A000265(n) * (1 + A000265(n))). - _Nicolas Nagel_, Mar 19 2018

%F From _Amiram Eldar_, Jul 02 2020: (Start)

%F Equals Sum_{k>=2} zeta(k)/2^k.

%F Equals -Sum_{k>=2} log(1 - 1/k^2).

%F Equals Sum_{k>=1} 1/A002939(k).

%F Equals Integral_{x=0..Pi/3} tan(x) dx. (End)

%F log(2) = Integral_{x=0..Pi/2} (sec(x) - tan(x)) dx. - _Clark Kimberling_, Jul 08 2020

%F From _Peter Bala_, Nov 14 2020: (Start)

%F log(2) = Integral_{x = 0..1} (x - 1)/log(x) dx (Boros and Moll, p. 97).

%F log(2) = (1/2)*Integral_{x = 0..1} (x + 2)*(x - 1)^2/log(x)^2 dx.

%F log(2) = (1/4)*Integral_{x = 0..1} (x^2 + 3*x + 4)*(x - 1)^3/log(x)^3 dx. (End)

%F log(2) = 2*arcsinh(sqrt(2)/4) = 2*sqrt(2)*Sum_{n >= 0} (-1)^n*C(2*n,n)/ ((8*n+4)*32^n) = 3*Sum_{n >= 0} (-1)^n/((8*n+4)*(2^n)*C(2*n,n)). - _Peter Bala_, Jan 14 2022

%F log(2) = Integral_{x=0..oo} ( e^(-x) * (1-e^(-2x)) * (1-e^(-4x)) * (1-e^(-6x)) ) / ( x * (1-e^(-14x)) ) dx (see Crux Mathematicorum link). - _Bernard Schott_, Jul 11 2022

%F From _Peter Bala_, Oct 22 2023: (Start)

%F log(2) = 23/32 + 2!^3/16 * Sum_{n >= 1} (-1)^n * (n + 1)/(n*(n + 1)*(n + 2))^2 = 707/1024 - 4!^3/(16^2 * 2!^2) * Sum_{n >= 1} (-1)^n * (n + 2)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4))^2 = 42611/61440 + 6!^3/(16^3 * 3!^2) * Sum_{n >= 1} (-1)^n * (n + 3)/(n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6))^2.

%F More generally, it appears that for k >= 0, log(2) = c(k) + (2*k)!^3/(16^k * k!^2) * Sum_{n >= 1} (-1)^(n+k+1) * (n + k)/(n*(n + 1)*...*(n + 2*k))^2 , where c(k) is a rational approximation to log(2). The first few values of c(k) are [0, 23/32, 707/1024, 42611/61440, 38154331/55050240, 76317139/110100480, 26863086823/38755368960, ...].

%F Let P(n,k) = n*(n + 1)*...*(n + k).

%F Conjecture: for k >= 0 and r even with r - 1 <= k, the series Sum_{n >= 1} (-1)^n * (d/dn)^r (P(n,k)) / (P(n,k)^2 = A(r,k)*log(2) + B(r,k), where A(r,k) and B(r,k) are both rational numbers. (End)

%F From _Peter Bala_, Nov 13 2023: (Start)

%F log(2) = 5/8 + (1/8)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)^2 / ( k*(k + 1) )^4

%F = 257/384 + (3!^5/2^9)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)^2*(2*k + 5) / ( k*(k + 1)*(k + 2)*(k + 3) )^4

%F = 267515/393216 + (5!^5/2^19)*Sum_{k >= 1} (-1)^(k+1) * (2*k + 1)*(2*k + 3)*(2*k + 5)^2*(2*k + 7)*(2*k + 9) / ( k*(k + 1)*(k + 2)*(k + 3)*(k + 4)*(k + 5) )^4

%F log(2) = 3/4 - 1/128 * Sum_{k >= 0} (-1/16)^k * (10*k + 12)*binomial(2*k+2,k+1)/ ((k + 1)*(2*k + 3)). The terms of the series are O(1/(k^(3/2)*4^n)). (End)

%F log(2) = eta(1) is a period, where eta(x) is the Dirichlet eta function. - _Andrea Pinos_, Mar 19 2024

%e 0.693147180559945309417232121458176568075500134360255254120680009493393...

%t RealDigits[N[Log[2],200]][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 21 2011 *)

%t RealDigits[Log[2],10,120][[1]] (* _Harvey P. Dale_, Jan 25 2024 *)

%o (PARI) { default(realprecision, 20080); x=10*log(2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b002162.txt", n, " ", d)); } \\ _Harry J. Smith_, Apr 21 2009

%Y Cf. A016730 (continued fraction), A002939, A008288, A142979, A142992.

%K nonn,cons

%O 0,1

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 12:32 EDT 2024. Contains 372519 sequences. (Running on oeis4.)