The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002083 Narayana-Zidek-Capell numbers: a(n) = 1 for n <= 2. Otherwise a(2n) = 2a(2n-1), a(2n+1) = 2a(2n) - a(n).
(Formerly M0787 N0297)
24

%I M0787 N0297 #155 Oct 28 2023 11:49:06

%S 1,1,1,2,3,6,11,22,42,84,165,330,654,1308,2605,5210,10398,20796,41550,

%T 83100,166116,332232,664299,1328598,2656866,5313732,10626810,21253620,

%U 42505932,85011864,170021123,340042246,680079282,1360158564

%N Narayana-Zidek-Capell numbers: a(n) = 1 for n <= 2. Otherwise a(2n) = 2a(2n-1), a(2n+1) = 2a(2n) - a(n).

%C Number of compositions p(1) + p(2) + ... + p(k) = n of n into positive parts p(i) with p(1)=1 and p(k) <= Sum_{j=1..k-1} p(j), see example - Claude Lenormand (claude.lenormand(AT)free.fr), Jan 29 2001 (clarified by _Joerg Arndt_, Feb 01 2013)

%C a(n) is the number of sequences (b(1),b(2),...) of unspecified length satisfying b(1) = 1, 1 <= b(i) <= 1 + Sum[b(j),{j,i-1}] for i>=2, Sum[b(i)] = n-1. For example, a(5) = 3 counts (1, 1, 1, 1), (1, 2, 1), (1, 1, 2). These sequences are generated by the Mathematica code below. - _David Callan_, Nov 02 2005

%C a(n+1) is the number of padded compositions (d_1,d_2,...,d_n) of n satisfying d_i <= i for all i. A padded composition of n is obtained from an ordinary composition (c_1,c_2,...,c_r) of n (r >= 1, each c_i >= 1, Sum_{i=1..r} c_i = n) by inserting c_i - 1 zeros immediately after each c_i. Thus (3,1,2) -> (3,0,0,1,2,0) is a padded composition of 6 and a padded composition of n has length n. For example, with n=4, a(5) counts (1,1,1,1), (1,1,2,0), (1,2,0,1). - _David Callan_, Feb 04 2006

%C From _David Callan_, Sep 25 2006: (Start)

%C a(n) is the number of ordered trees on n edges in which (i) every node (= non-root non-leaf vertex) has at least 2 children and (ii) each leaf is either the leftmost or rightmost child of its parent.

%C For example, a(4)=2 counts

%C ./\.../\

%C /\...../\,

%C and a(5)=3 counts

%C .|.......|....../|\

%C / \...../ \...../ \

%C ../\.../\.

%C (End)

%C Starting with offset 2 = eigensequence of triangle A101688 and row sums of triangle A167948. - _Gary W. Adamson_, Nov 15 2009

%C If we remove the condition that a(2) = 1, then the resulting sequence is A045690 minus the first term. - _Chai Wah Wu_, Nov 08 2022

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.28.

%D T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A002083/b002083.txt">Table of n, a(n) for n = 1..3325</a> (first 200 terms from T. D. Noe)

%H Magnus Aspenberg and Rodrigo Perez, <a href="https://arxiv.org/abs/1006.1340">Control of cancellations that restrain the growth of a binomial recursion</a>, arXiv:1006.1340 [math.CO], 2010. Mentions this sequence.

%H P. Capell and T. V. Narayana, <a href="http://dx.doi.org/10.4153/CMB-1970-021-1">On knock-out tournaments</a>, Canad. Math. Bull. 13 1970 105-109.

%H Nathaniel D. Emerson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Emerson/emerson6.html">A Family of Meta-Fibonacci Sequences Defined by Variable-Order Recursions</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.8.

%H G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1983__84__45_0">Sur quelques problèmes relatifs au vote pondéré</a>, [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63.

%H G. Kreweras, and P. Moszkowski, <a href="http://dx.doi.org/10.1016/0378-3758(86)90011-X">A new enumerative property of the Narayana numbers</a>, Journal of statistical planning and inference 14.1 (1986): 63-67.

%H D. Levin, L. Pudwell, M. Riehl and A. Sandberg, <a href="https://www.etsu.edu/cas/math/documents/riehl.pdf">Pattern Avoidance on k-ary Heaps</a>, Slides of Talk, 2014.

%H J. W. Moon, R. K. Guy and N. J. A. Sloane, <a href="/A002083/a002083.pdf">Correspondence, 1988</a>

%H T. V. Narayana, <a href="http://visualiseur.bnf.fr/Visualiseur?O=NUMM-480295&amp;I=000035&amp;M=tdm">Quelques résultats relatifs aux tournois "knock-out" et leurs applications aux comparaisons aux paires</a>, C. R. Acad. Sci. Paris, Series A-B 267 1968 A32-A33.

%H T. V. Narayana and J. Zidek, <a href="http://www.numdam.org/item?id=BURO_1969__13__3_0">Contributions to the theory of tournaments I</a>, Cahiers du Bur. Univ. de Rech. Oper., 13 (1969), 1-18. [MR 0256734, 41 #1390]

%H John Riordan and N. J. A. Sloane, <a href="/A003471/a003471_1.pdf">Correspondence, 1974</a>

%H M. A. Stern, <a href="https://www.digizeitschriften.de/dms/img/?PID=GDZPPN002141558">5. Aufgaben.</a>, Journal für die reine und angewandte Mathematik (Crelle's journal), volume 18, 1838, p. 100.

%H Mauro Torelli, <a href="http://www.numdam.org/item?id=ITA_2006__40_2_107_0">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 40:2 (2006), pp. 107-121.

%H B. E. Wynne & N. J. A. Sloane, <a href="/A002083/a002083_1.pdf">Correspondence, 1976-84</a>

%H B. E. Wynne & T. V. Narayana, <a href="/A002083/a002083_2.pdf">Tournament configuration, weighted voting, and partitioned catalans</a>, Preprint.

%H Bayard Edmund Wynne and T. V. Narayana, <a href="http://www.numdam.org/item?id=BURO_1981__36__75_0">Tournament configuration and weighted voting</a>, Cahiers du bureau universitaire de recherche opérationnelle, 36 (1981): 75-78.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F a(1)=1, else a(n) is sum of floor(n/2) previous terms.

%F Conjecture: lim_{n->oo} a(n)/2^(n-3) = a constant ~0.633368 (=2*A242729). - _Gerald McGarvey_, Jul 18 2004

%F First column of A155092. - _Mats Granvik_, Jan 20 2009

%F a(n+2) = A037254(n,1) = A037254(n,floor(n/2)+1). - _Reinhard Zumkeller_, Nov 18 2012

%F Limit is equal to 0.633368347305411640436713144616576659... = 2*Atkinson-Negro-Santoro constant = 2*A242729, see Finch's book, chapter 2.28 (Erdős' Sum-Distinct Set Constant), pp. 189, 552. - _Vaclav Kotesovec_, Nov 19 2012

%F a(n) is the permanent of the (n-1) X (n-1) matrix with (i, j) entry = 1 if i-1 <= j <= 2*i-1 and = 0 otherwise. - _David Callan_, Nov 02 2005

%F a(n) = Sum_{k=1..n} K(n-k+1, k)*a(n-k), where K(n,k) = 1 if 0 <= k AND k <= n and K(n,k)=0 else. (Several arguments to the K-coefficient K(n,k) can lead to the same sequence. For example, we get A002083 also from a(n) = Sum_{k=1..n} K((n-k)!,k!)*a(n-k), where K(n,k) = 1 if 0 <= k <= n and 0 else. See also the comment to a similar formula for A002487.) - _Thomas Wieder_, Jan 13 2008

%F G.f. satisfies: A(x) = (1-x - x^2*A(x^2))/(1-2x). - _Paul D. Hanna_, Mar 17 2010

%e From _Joerg Arndt_, Feb 01 2013: (Start)

%e The a(7) = 11 compositions p(1) + p(2) + ... + p(k) = 7 of 7 into positive parts p(i) with p(1)=1 and p(k) <= Sum_{j=1..k-1} p(j) are

%e [ 1] [ 1 1 1 1 1 1 1 ]

%e [ 2] [ 1 1 1 1 1 2 ]

%e [ 3] [ 1 1 1 1 2 1 ]

%e [ 4] [ 1 1 1 1 3 ]

%e [ 5] [ 1 1 1 2 1 1 ]

%e [ 6] [ 1 1 1 2 2 ]

%e [ 7] [ 1 1 1 3 1 ]

%e [ 8] [ 1 1 2 1 1 1 ]

%e [ 9] [ 1 1 2 1 2 ]

%e [10] [ 1 1 2 2 1 ]

%e [11] [ 1 1 2 3 ]

%e (End)

%p A002083 := proc(n) option remember; if n<=3 then 1 elif n mod 2 = 0 then 2*A002083(n-1) else 2*A002083(n-1)-A002083((n-1)/2); fi; end;

%p a := proc(n::integer) # A002083 Narayana-Zidek-Capell numbers: a(2n)=2a(2n-1), a(2n+1)=2a(2n)-a(n). local k; option remember; if n = 0 then 1 else add(K(n-k+1, k)*procname(n - k), k = 1 .. n); #else add(K((n-k)!, k!)*procname(n - k), k = 1 .. n); end if end proc; K := proc(n::integer, k::integer) local KC; if 0 <= k and k <= n then KC := 1 else KC := 0 end if; end proc; # _Thomas Wieder_, Jan 13 2008

%t a[1] = 1; a[n_] := a[n] = Sum[a[k], {k, n/2, n-1} ]; Table[ a[n], {n, 2, 70, 2} ] (* _Robert G. Wilson v_, Apr 22 2001 *)

%t bSequences[1]={ {1} }; bSequences[n_]/;n>=2 := bSequences[n] = Flatten[Table[Map[Join[ #, {i}]&, bSequences[n-i]], {i, Ceiling[n/2]}], 1] (* _David Callan_ *)

%t a=ConstantArray[0,20]; a[[1]]=1; a[[2]]=1; Do[If[EvenQ[n],a[[n]]=2a[[n-1]],a[[n]]=2a[[n-1]]-a[[(n-1)/2]]];,{n,3,20}]; a (* _Vaclav Kotesovec_, Nov 19 2012 *)

%o (PARI) a(n)=if(n<3,n>0,2*a(n-1)-(n%2)*a(n\2))

%o (PARI) a(n)=local(A=1+x);for(i=1,n,A=(1-x-x^2*subst(A,x,x^2+O(x^n)))/(1-2*x));polcoeff(A,n) \\ _Paul D. Hanna_, Mar 17 2010

%o (Haskell)

%o a002083 n = a002083_list !! (n-1)

%o a002083_list = 1 : f [1] where

%o f xs = x : f (x:xs) where x = sum $ take (div (1 + length xs) 2) xs

%o -- _Reinhard Zumkeller_, Dec 27 2011

%o (Python)

%o from functools import lru_cache

%o @lru_cache(maxsize=None)

%o def A002083(n): return 1 if n <=3 else (A002083(n-1)<<1)-(A002083(n>>1) if n&1 else 0) # _Chai Wah Wu_, Nov 07 2022

%Y Cf. A045690. A058222 gives sums of words.

%Y Cf. A001045, A002487, A101688, A167948.

%Y Cf. A242729.

%Y Bisections: A245094, A259858.

%K easy,core,nonn,nice

%O 1,4

%A _N. J. A. Sloane_

%E Definition clarified by _Chai Wah Wu_, Nov 08 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 20:35 EDT 2024. Contains 372555 sequences. (Running on oeis4.)