The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001896 Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).
(Formerly M4403 N1858)
26

%I M4403 N1858 #100 Jan 24 2024 09:16:24

%S 1,-1,7,-31,127,-2555,1414477,-57337,118518239,-5749691557,

%T 91546277357,-1792042792463,1982765468311237,-286994504449393,

%U 3187598676787461083,-4625594554880206790555,16555640865486520478399,-22142170099387402072897

%N Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).

%C |A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - _David Callan_, Aug 27 2014

%C See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - _Peter Bala_, Jul 18 2013

%D H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.

%D S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.

%D N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Hector Blandin and Rafael Diaz, <a href="http://arXiv.org/abs/0708.0809">Compositional Bernoulli numbers</a>, arXiv:0708.0809 [math.CO], 2007-2008; Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897.

%H S. A. Joffe, <a href="/A001896/a001896.pdf">Sums of like powers of natural numbers</a>, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]

%H Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Tsumura/tsumura3.html">On Polycosecant Numbers</a>, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3.

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/1968647">Lacunary recurrence formulas for the numbers of Bernoulli and Euler</a>, Annals Math., 36 (1935), 637-649.

%H N. E. Nörlund, <a href="/A001896/a001896_1.pdf">Vorlesungen über Differenzenrechnung</a>, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]

%H <a href="/index/Be#Bernoulli">Index entries for sequences related to Bernoulli numbers.</a>

%F a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - _Groux Roland_, Nov 10 2009

%F a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - _Peter Luschny_, Jun 29 2012

%F E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - _Peter Bala_, Jul 18 2013

%F a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - _Peter Luschny_, Jul 25 2021

%e 1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).

%e Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).

%p seq(numer(bernoulli(2*n, 1/2)), n=0..20);

%t a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* _Jean-François Alcover_, Sep 11 2013 *)

%o (PARI) a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ _Michel Marcus_, Mar 01 2015

%o (Sage)

%o def A001896_list(len):

%o R, C = [1], [1]+[0]*(len-1)

%o for n in (1..len-1):

%o for k in range(n, 0, -1):

%o C[k] = C[k-1] / (8*k*(2*k+1))

%o C[0] = -sum(C[k] for k in (1..n))

%o R.append((C[0]*factorial(2*n)).numerator())

%o return R

%o A001896_list(18) # _Peter Luschny_, Feb 20 2016

%Y Cf. A001897 (denominators), A033469, A036280, A062715, A145901.

%Y Cf. A132092-A132099.

%K sign,frac

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 16:47 EDT 2024. Contains 373133 sequences. (Running on oeis4.)