# A note on the Catalan transform of a sequence 

Peter Bala, May 12, 2017
Difference tables can be used to calculate the binomial transform of a sequence. We show a similar method can be used to find the Catalan transform of a sequence.

## The Catalan transformation

The Catalan transform is a sequence transform introduced by Barry [BA2005]. Recall the Catalan numbers $C(n)$ are given by

$$
C(n)=\frac{1}{2 n+1}\binom{2 n}{n}
$$

with ordinary generating function (o.g.f.) $c(x)$ given by the formula

$$
\begin{aligned}
c(x) & =\frac{1-\sqrt{1-4 x}}{2 x} \\
& =1+x+2 x^{2}+5 x^{3}+14 x^{4}+\cdots
\end{aligned}
$$

Definition. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence with the generating function $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$. The Catalan transform of the sequence $\left(a_{n}\right)$ is defined to be the sequence whose o.g.f. is $A(x c(x))$.

We describe the function $A(x c(x))$ as the Catalan transform of the function $A(x)$. Calculation gives

$$
\begin{gathered}
A(x c(x))=a_{0}+a_{1} x+\left(a_{1}+a_{2}\right) x^{2}+\left(2 a_{1}+2 a_{2}+a_{3}\right) x^{3}+ \\
\left(5 a_{1}+5 a_{2}+3 a_{3}+a_{4}\right) x^{4}+\cdots
\end{gathered}
$$

Barry shows the Catalan transform of a sequence corresponds to the matrix multiplication

$$
\left(\begin{array}{cccccc}
1 & & & & &  \tag{1}\\
& 1 & & & & \\
& 1 & 1 & & & \\
& 2 & 2 & 1 & & \\
& 5 & 5 & 3 & 1 & \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
a_{1} \\
a_{1}+a_{2} \\
2 a_{1}+2 a_{2}+a_{3} \\
5 a_{1}+5 a_{2}+3 a_{3}+a_{4} \\
\vdots
\end{array}\right)
$$

where the lower triangular array on the left side of (1) is the Catalan convolution array A106566; this array is the element of the Bell subgroup of the Riordan group given by $(1, x c(x))$. See A033184 for another version of the array.

An alternative approach to finding the Catalan transformation of a sequence is as follows: given a sequence $\left(a_{n}\right)_{n \geq 0}$, construct a lower triangular array $(T(n, k))_{n, k \geq 0}$ by putting the sequence as column 0 of the array and completing the remaining columns of the array by means of the recurrence equation

$$
\begin{equation*}
T(n, k)=T(n, k-1)+T(n-1, k) \quad[1 \leq k \leq n] \tag{2}
\end{equation*}
$$

Then the leading diagonal of the resulting array is equal to the Catalan transform of the sequence $a_{n}$. The first few rows of the array are shown below.

$$
\left(\begin{array}{ccccc}
a_{0} & & & & \\
a_{1} & a_{1} & & \\
a_{2} & a_{1}+a_{2} & a_{1}+a_{2} & \\
a_{3} & a_{1}+a_{2}+a_{3} & 2 a_{1}+2 a_{2}+a_{3} & 2 a_{1}+2 a_{2}+a_{3} & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Note that in the above, if instead of the recurrence (2) we used the recurrence $T(n, k)=T(n-1, k-1)+T(n-1, k)$, then the leading diagonal of the resulting array would give the binomial transform $\sum_{k}\binom{n}{k} a_{k}$ of the original sequence $a_{n}$.

Problem 1. Find the first few terms in the expansion of $c(x)^{3}$.
The o.g.f. $x^{3} c(x)^{3}$ is the Catalan transform of the function $x^{3}$, which is the o.g.f. for the sequence $(0,0,0,1,0,0, \ldots)$. Using the recurrence relations (2) to find the Catalan transform of the sequence $(0,0,0,1,0,0, \ldots)$ results in the triangle

$$
\left(\begin{array}{ccccccccc}
0 & & & & & & & & \\
0 & 0 & & & & & & & \\
0 & 0 & 0 & & & & & & \\
1 & 1 & 1 & 1 & & & & & \\
0 & 1 & 2 & 3 & 3 & & & & \\
0 & 1 & 3 & 6 & 9 & 9 & & & \\
0 & 1 & 4 & 10 & 19 & 28 & 28 & & \\
0 & 1 & 5 & 15 & 34 & 62 & 90 & 90 & \\
\vdots & \ddots
\end{array}\right)
$$

The coefficients in the expansion of $x^{3} c(x)^{3}$, and hence of $c(x)^{3}$, can be read off the leading diagonal of the triangle yielding

$$
c(x)^{3}=1+3 x+9 x^{2}+28 x^{3}+90 x^{4}+\cdots
$$

In order to prove that the above triangular process when applied to a formal power series $A(x)$ produces the Catalan transform of $A(x)$ as the leading diagonal of the triangle, it is sufficient to prove it for the case when $A(x)=x^{n}$, $n=1,2, \ldots$ is a monomial. The general case will then follow by the linearity of the process. The case of monomials is the content of Theorem 20 in [TE2011]. The lower triangular array that our approach produces when applied to find the Catalan transform of the monomial $x^{k+1}$ is equivalent to Tedford's array $\bar{P}_{k}$. Tedfords's arrays are essentially our arrays read by shallow diagonals. For example, the array calculated in Problem 1 when read by shallow diagonals corresponds to $\bar{P}_{2}$ in [TE2011, Section 5, Fig.4].

## Exponential generating functions

We can find the Catalan transform $A(x c(x))$ of the exponential generating function $A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$ by the above triangular method. However, if we wish to avoid working with rational numbers we need to modify the process as follows. After placing the sequence $\left(a_{n}\right)$ in the first column of the array, the remainder of the array is now completed using the recurrence equations

$$
\begin{equation*}
T(n, k)=T(n, k-1)+n T(n-1, k) \quad[1 \leq k \leq n] \tag{3}
\end{equation*}
$$

The factor of $n$ in the recurrence compensates for the $n!$ terms in the exponential generating function. As an example, the following table shows the steps in calculating the Catalan transform of the exponential function $\exp (x)$.

| Row | $a_{n}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 0 | $\mathbf{1}$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 1 | $\mathbf{1}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1}$ |  |  |  |  |  |  |  |
|  |  |  | $\uparrow \times 2$ |  |  |  |  |  |  |  |
| 2 | $\mathbf{1}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{3}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{3}$ |  |  |  |  |  |
|  |  |  | $\uparrow \mathrm{x} 3$ |  | $\uparrow \times 3$ |  |  |  |  |  |
| 3 | $\mathbf{1}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 0}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 9}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 9}$ |  |  |  |
|  |  |  | $\uparrow \times 4$ |  | $\uparrow \times 4$ |  | $\uparrow \times 4$ |  |  |  |
| 4 | $\mathbf{1}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{4 1}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 1 7}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 9 3}$ | $\leftarrow \mathrm{x} 1 \rightarrow$ | $\mathbf{1 9 3}$ |  |
| $\vdots$ |  |  |  |  |  |  |  |  |  | $\ddots$. |

Table 1. Catalan transform of $\exp (x)$.

From the leading diagonal of the table we find

$$
\exp (x c(x))=1+x+\frac{3 x^{2}}{2!}+\frac{19 x^{3}}{3!}+\frac{193 x^{4}}{4!}+\cdots
$$

The coefficient sequence $[1,1,3,19,193, \ldots]$ is the sequence of values of the Bessel polynomials $y_{n}(x)$ at $x=2$. See A001517.

## References

[BA2005] P. Barry, A Catalan Transform and Related Transformations of Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.4
[TE2011] S. J. Tedford, Combinatorial interpretations of convolutions of the Catalan numbers Integers 11 (2011) \#A3

