The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.
(Formerly M2495 N0988)
98

%I M2495 N0988 #279 Sep 17 2023 21:40:31

%S 1,3,5,15,17,51,85,255,257,771,1285,3855,4369,13107,21845,65535,65537,

%T 196611,327685,983055,1114129,3342387,5570645,16711935,16843009,

%U 50529027,84215045,252645135,286331153,858993459,1431655765,4294967295,4294967297,12884901891,21474836485,64424509455,73014444049,219043332147,365072220245,1095216660735,1103806595329,3311419785987

%N Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

%C The members are all palindromic in binary, i.e., a subset of A006995. - _Ralf Stephan_, Sep 28 2004

%C J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - _N. J. A. Sloane_, Jun 15 2015]

%C Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - _Eric W. Weisstein_, Apr 08 2006

%C Limit_{n->oo} log(a(n))/n = log(2). - _Bret Mulvey_, May 17 2008

%C Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - _Gary W. Adamson_, Oct 16 2009

%C Equals row sums of triangle A166555. - _Gary W. Adamson_, Oct 17 2009

%C For n >= 1, all terms are in A001969. - _Vladimir Shevelev_, Oct 25 2010

%C Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - _Vladimir Shevelev_, Nov 28 2010

%C Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - _Vladimir Shevelev_, Nov 29 2010

%C Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - _Vladimir Shevelev_, Jan 02 2011

%C Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - _Joerg Arndt_, Jan 07 2011

%C This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as

%C 1111111...

%C 10101010...

%C 11001100...

%C 10001000...

%C we get (taking the period part in each row):

%C .(1) (base 2) = 1

%C .(10) = 2/3

%C .(1100) = 12/15 = 4/5

%C .(1000) = 8/15

%C The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - _Katarzyna Matylla_, Mar 12 2011

%C From _Daniel Forgues_, Jun 16-18 2011: (Start)

%C Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.

%C It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):

%C a(0)=1 (empty product) are products of distinct Fermat numbers in { };

%C a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.

%C Thus for n >= 1, 0 <= k <= 2^n - 1, and

%C a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},

%C this implies

%C a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.

%C (Cf. OEIS Wiki links below.) (End)

%C The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - _Antti Karttunen_, Feb 10 2016

%D Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.

%D Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Amiram Eldar, <a href="/A001317/b001317.txt">Table of n, a(n) for n = 0..3321</a> (terms 0..300 from T. D. Noe, terms 301..1023 from Tilman Piesk)

%H Gary W. Adamson, <a href="/A001317/a001317.pdf">Letter to N. J. A. Sloane, Apr 29 1994, and MS "Algorithm for the Chinese Remainder Theorem"</a>.

%H Gary W. Adamson and N. J. A. Sloane, <a href="/A001317/a001317_2.pdf">Correspondence, May 1994</a>, including Adamson's MSS "Algorithm for Generating nth Row of Pascal's Triangle, mod 2, from n", and "The Tower of Hanoi Wheel".

%H Cristian Cobeli and Alexandru Zaharescu, <a href="https://www.jstor.org/stable/43679285">Promenade around Pascal Triangle-Number Motives</a>, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104), No. 1 (2013), pp. 73-98; <a href="http://rms.unibuc.ro/bulletin/pdf/56-1/PromenadePascalPart1.pdf">alternative link</a>.

%H Richard K. Guy, <a href="http://www.jstor.org/stable/2691503">The Second Strong Law of Small Numbers</a>, Math. Mag, Vol. 63, No. 1 (1990), pp. 3-20. [<a href="/A005347/a005347.pdf">Annotated scanned copy</a>]

%H Richard K. Guy and N. J. A. Sloane, <a href="/A005180/a005180.pdf">Correspondence</a>, 1988.

%H Denton Hewgill, <a href="http://www.fq.math.ca/Scanned/15-2/hewgill.pdf">A relationship between Pascal's triangle and Fermat numbers</a>, Fib. Quart., Vol. 15, No. 2 (1977), pp. 183-184.

%H A. J. Macfarlane, <a href="http://www.damtp.cam.ac.uk/user/ajm/Papers2016/GFsForCAsOfEvenRuleNo.ps">Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers</a>, Fig. 4.

%H Dr. Math, <a href="http://www.mathforum.org/dr.math/faq/formulas/faq/regpoly.html">Regular polygon formulas</a>.

%H P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, <a href="https://arxiv.org/abs/2201.06636">On digital sequences associated with Pascal's triangle</a>, arXiv:2201.06636 [math.NT], 2022.

%H OEIS Wiki, <a href="/wiki/Constructible_odd-sided_polygons">Constructible odd-sided polygons</a> and <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>.

%H Vladimir Shevelev, <a href="http://www.scientificadvances.co.in/artical/3/91">On Stephan's conjectures concerning Pascal triangle modulo 2</a>, J. Alg. Number Theory, Vol. 7, No. 1 (2012) pp. 11-29, <a href="http://arxiv.org/abs/1011.6083">preprint</a>, arXiv:1011.6083 [math.NT], 2010-2012.

%H John Frederick Sweeney, <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.5350&amp;rep=rep1&amp;type=pdf">Clifford Clock and the Moolakaprithi Cube</a>, 2014. See p. 26. - _N. J. A. Sloane_, Mar 20 2014

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rule60.html">Rule 60</a> and <a href="http://mathworld.wolfram.com/Rule102.html">Rule 102</a>.

%H Neil L. White, <a href="/A001317/a001317_3.pdf">Letter to N. J. A. Sloane, Apr 15 1982</a>.

%H R. G. Wilson, V, <a href="/A007117/a007117.pdf">Letter to N. J. A. Sloane, Aug. 1993</a>.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="/index/Ge#GF2X">Index entries for sequences operating on polynomials in ring GF(2)[X]</a>

%F a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - _Paul D. Hanna_, Apr 27 2003

%F a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - _Benoit Cloitre_, Jun 08 2004

%F a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and _Ralf Stephan_, Sep 28 2004

%F a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - _Bret Mulvey_, May 17 2008

%F For n >= 1, A000120(a(n)) = 2^A000120(n). - _Vladimir Shevelev_, Oct 25 2010

%F a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,

%F a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - _Vladimir Shevelev_, Nov 28 2010

%F Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);

%F Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).

%F If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - _Vladimir Shevelev_, Nov 29 2010

%F G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by _Shamil Shakirov_, proved by _Vladimir Shevelev_

%F a(n) = A000225(n+1) - A219843(n). - _Reinhard Zumkeller_, Nov 30 2012

%F From _Antti Karttunen_, Feb 10 2016: (Start)

%F a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).

%F a(n) = A048723(3,n).

%F a(n) = A193231(A000079(n)).

%F For all n >= 0: A268389(a(n)) = n.

%F (End)

%e Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.

%e From _Daniel Forgues_, Jun 18 2011: (Start)

%e a(0) = 1 (empty product);

%e a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;

%e a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;

%e a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;

%e a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;

%e a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;

%e a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;

%e a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;

%e ... (End)

%p A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;

%t f[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[f, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)

%t f[n_] := FromDigits[ Table[ Mod[ Binomial[n, k], 2], {k, 0, n}], 2]; Array[f, 42, 0] (* _Robert G. Wilson v_ *)

%t NestList[BitXor[#,2#]&,1,50] (* _Harvey P. Dale_, Aug 02 2021 *)

%o (PARI) a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)

%o (PARI) a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ _Joerg Arndt_, Mar 27 2013

%o (PARI) A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ _M. F. Hasler_, Jun 06 2016

%o (PARI) a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ _Gheorghe Coserea_, Nov 09 2017

%o (Haskell)

%o a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row

%o -- _Reinhard Zumkeller_, Nov 24 2012

%o (Scheme, with memoization-macro definec, two variants)

%o (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))

%o (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.

%o ;; _Antti Karttunen_, Feb 10 2016

%o (Magma) [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // _Vincenzo Librandi_, Feb 12 2016

%o (Python)

%o from sympy import binomial

%o def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # _Indranil Ghosh_, Apr 11 2017

%o (Python)

%o def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # _Chai Wah Wu_, Feb 04 2022

%Y Cf. A000079, A000215 (Fermat numbers), A047999, A048720, A054432, A173019, A177882, A177897, A177960, A193231, A230116, A247282, A249184, A268391.

%Y Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).

%Y Iterates of A048724 (starting from 1).

%Y Row 3 of A048723.

%Y Positions of records in A268389.

%Y Positions of ones in A268669 and A268384 (characteristic function).

%Y Not the same as A045544 nor as A053576.

%Y Cf. A045544.

%K nonn,base,easy,nice,hear

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 16:51 EDT 2024. Contains 372719 sequences. (Running on oeis4.)