The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000346 a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).
(Formerly M3920 N1611)
90

%I M3920 N1611 #155 Nov 29 2023 11:43:12

%S 1,5,22,93,386,1586,6476,26333,106762,431910,1744436,7036530,28354132,

%T 114159428,459312152,1846943453,7423131482,29822170718,119766321572,

%U 480832549478,1929894318332,7744043540348,31067656725032,124613686513778,499744650202436

%N a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).

%C Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).

%C Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - _David Callan_, Jul 14 2006

%C Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - _Paul Barry_, Jan 21 2007

%C Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - _Emanuele Munarini_, Mar 16 2011

%C From _Gus Wiseman_, Jul 19 2021: (Start)

%C For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:

%C (6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)

%C (2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)

%C (4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)

%C (5,1) (2,1,3) (1,3,1,1)

%C (2,2,2) (2,1,2,1)

%C (3,1,2) (3,1,1,1)

%C (3,2,1)

%C (4,1,1)

%C (End)

%D T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

%D D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A000346/b000346.txt">Table of n, a(n) for n = 0..500</a>

%H R. Bacher, <a href="http://arxiv.org/abs/math/0409050">On generating series of complementary plane trees</a> arXiv:math/0409050 [math.CO], 2004.

%H Vijay Balasubramanian, Javier M. Magan, and Qingyue Wu, <a href="https://arxiv.org/abs/2208.08452">A Tale of Two Hungarians: Tridiagonalizing Random Matrices</a>, arXiv:2208.08452 [hep-th], 2022.

%H Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.

%H E. A. Bender, E. R. Canfield and R. W. Robinson, <a href="http://dx.doi.org/10.4153/CMB-1988-039-4">The enumeration of maps on the torus and the projective plane</a>, Canad. Math. Bull., 31 (1988), 257-271; see p. 270.

%H D. E. Davenport, L. K. Pudwell, L. W. Shapiro and L. C. Woodson, <a href="http://faculty.valpo.edu/lpudwell/papers/treeboundary.pdf">The Boundary of Ordered Trees</a>, 2014.

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 185

%H R. K. Guy, <a href="/A000346/a000346.pdf">Letter to N. J. A. Sloane</a>

%H Toufik Mansour and José L. Ramirez, <a href="https://ajc.maths.uq.edu.au/pdf/81/ajc_v81_p447.pdf">Enumerations of polyominoes determined by Fuss-Catalan words</a>, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.

%H Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Merca1/merca6.html">A Special Case of the Generalized Girard-Waring Formula</a>, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7. - From _N. J. A. Sloane_, Nov 25 2012

%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://www.dsi.unifi.it/~merlini/fun01.ps">Waiting patterns for a printer</a>, FUN with algorithm'01, Isola d'Elba, 2001.

%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=2).

%H Vera Posch, <a href="https://www.diva-portal.org/smash/get/diva2:1776814/FULLTEXT01.pdf">Correlators in Matrix Models</a>, Master Thesis, Uppsala Univ. (Sweden 2023). See p. 44.

%H John Riordan, <a href="/A002720/a002720_3.pdf">Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences</a>. Note that the sequences are identified by their N-numbers, not their A-numbers.

%H W. T. Tutte, <a href="http://dx.doi.org/10.1090/S0002-9904-1968-11877-4">On the enumeration of planar maps</a>. Bull. Amer. Math. Soc. 74 1968 64-74.

%H T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(72)90056-1">Counting rooted maps by genus</a>, J. Comb. Thy B13 (1972), 122-141 and 192-218 (eq. 5, b=1).

%H N. J. A. Sloane, <a href="/A007401/a007401_1.pdf">Notes</a>

%F G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.

%F Convolution of Catalan numbers and powers of 4.

%F Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...

%F a(n) = A045621(2n+1) = (1/2)*A068551(n+1).

%F a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - _Philippe Deléham_, Jan 22 2004

%F a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - _Paul Barry_, Nov 13 2004

%F a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006

%F a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - _Paul Barry_, Jan 21 2007

%F Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - _Vladimir Kruchinin_, Aug 10 2010

%F D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - _Emanuele Munarini_, Mar 16 2011

%F E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).

%F This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - _Wolfdieter Lang_, Jan 16 2012

%F a(n) = Sum_{0<=i<j<=n+1} binomial(n+1, i)*binomial(n+1, j). - _Mircea Merca_, Apr 05 2012

%F A000346 = A004171 - A001700. See A032443 for the sum. - _M. F. Hasler_, Jan 02 2014

%F 0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - _Michael Somos_, Jan 25 2014

%F REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - _Michael Somos_, Jan 25 2014

%F Convolution square is A038806. - _Michael Somos_, Jan 25 2014

%F BINOMIAL transform of A055217(n-1) is a(n-1). - _Michael Somos_, Jan 25 2014

%F (n+1) * a(n) = A033504(n). - _Michael Somos_, Jan 25 2014

%F Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - _Fung Lam_, Mar 21 2014

%F Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - _Fung Lam_, Mar 21 2014

%F a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - _Wolfdieter Lang_, May 22 2015

%F a(n) = A000302(n) + A008549(n). - _Gus Wiseman_, Jul 19 2021

%F a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - _Fabio Visonà_, May 04 2022

%F a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - _Peter Luschny_, Nov 29 2023

%e G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...

%p seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # _Emanuele Munarini_, Mar 16 2011

%t Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* _Emanuele Munarini_, Mar 16 2011 *)

%t a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* _Michael Somos_, Jan 25 2014 *)

%o (PARI) {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* _Michael Somos_, Jan 25 2014 */

%o (Maxima) makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* _Emanuele Munarini_, Mar 16 2011 */

%o (Magma) [2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // _Vincenzo Librandi_, Jun 07 2011

%Y Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.

%Y Bisection of A058622 and (possibly) A007008.

%Y Cf. A045621, A068551.

%Y Cf. A033504, A038806, A055217, A069731.

%Y Even bisection of A294175 (without the first two terms).

%Y The following relate to compositions of 2n with alternating sum k.

%Y - The k > 0 case is counted by A000302.

%Y - The k <= 0 case is counted by A000302.

%Y - The k != 0 case is counted by A000346 (this sequence).

%Y - The k = 0 case is counted by A001700 or A088218.

%Y - The k < 0 case is counted by A008549.

%Y - The k >= 0 case is counted by A114121.

%Y A011782 counts compositions.

%Y A086543 counts partitions with nonzero alternating sum (bisection: A182616).

%Y A097805 counts compositions by alternating (or reverse-alternating) sum.

%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).

%Y A345197 counts compositions by length and alternating sum.

%Y Cf. A000070, A001791, A007318, A025047, A027306, A032443, A053754, A120452, A163493, A239830, A344611, A345921.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, _Wolfdieter Lang_

%E Corrected by _Christian G. Bower_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 17:27 EDT 2024. Contains 372554 sequences. (Running on oeis4.)