The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000254 Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.
(Formerly M2902 N1165)
174

%I M2902 N1165 #321 Apr 15 2024 13:05:04

%S 0,1,3,11,50,274,1764,13068,109584,1026576,10628640,120543840,

%T 1486442880,19802759040,283465647360,4339163001600,70734282393600,

%U 1223405590579200,22376988058521600,431565146817638400,8752948036761600000,186244810780170240000

%N Unsigned Stirling numbers of first kind, s(n+1,2): a(n+1) = (n+1)*a(n) + n!.

%C Number of permutations of n+1 elements with exactly two cycles.

%C Number of cycles in all permutations of [n]. Example: a(3) = 11 because the permutations (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) have 11 cycles altogether. - _Emeric Deutsch_, Aug 12 2004

%C Row sums of A094310: In the symmetric group S_n, each permutation factors into k independent cycles; a(n) = sum k over S_n. - Harley Flanders (harley(AT)umich.edu), Jun 28 2004

%C The sum of the top levels of the last column over all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column. Example: a(2)=3 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, the levels of their last columns being 2 and 1, respectively. - _Emeric Deutsch_, Aug 12 2006

%C a(n) is divisible by n for all composite n >= 6. a(2*n) is divisible by 2*n + 1. - _Leroy Quet_, May 20 2007

%C For n >= 2 the determinant of the n-1 X n-1 matrix M(i,j) = i + 2 for i = j and 1 otherwise (i,j = 1..n-1). E.g., for n = 3 the determinant of [(3, 1), (1, 4)]. See 53rd Putnam Examination, 1992, Problem B5. - _Franz Vrabec_, Jan 13 2008, Mar 26 2008

%C The numerator of the fraction when we sum (without simplification) the terms in the harmonic sequence. (1 + 1/2 = 2/2 + 1/2 = 3/2; 3/2 + 1/3 = 9/6 + 2/6 = 11/6; 11/6 + 1/4 = 44/24 + 6/24 = 50/24;...). The denominator of this fraction is n!*A000142. - _Eric Desbiaux_, Jan 07 2009

%C The asymptotic expansion of the higher order exponential integral E(x,m=2,n=1) ~ exp(-x)/x^2*(1 - 3/x + 11/x^2 - 50/x^3 + 274/x^4 - 1764/x^5 + 13068/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - _Johannes W. Meijer_, Oct 20 2009

%C a(n) is the number of permutations of [n+1] containing exactly 2 cycles. Example: a(2) = 3 because the permutations (1)(23), (12)(3), (13)(2) are the only permutations of [3] with exactly 2 cycles. - Tom Woodward (twoodward(AT)macalester.edu), Nov 12 2009

%C It appears that, with the exception of n= 4, a(n) mod n = 0 if n is composite and = n-1 if n is prime. - _Gary Detlefs_, Sep 11 2010

%C a(n) is a multiple of A025527(n). - _Charles R Greathouse IV_, Oct 16 2012

%C Numerator of harmonic number H(n) = Sum_{i=1..n} 1/i when not reduced. See A001008 (Wolstenholme numbers) for the reduced numerators. - _Rahul Jha_, Feb 18 2015

%C The Stirling transform of this sequence is A222058(n) (Harmonic-geometric numbers). - _Anton Zakharov_, Aug 07 2016

%C a(n) is the (n-1)-st elementary symmetric function of the first n numbers. - _Anton Zakharov_, Nov 02 2016

%C The n-th iterated integral of log(x) is x^n * (n! * log(x) - a(n))/(n!)^2 + a polynomial of degree n-1 with arbitrary coefficients. This can be proven using the recurrence relation a(n) = (n-1)! + n*a(n-1). - _Mohsen Maesumi_, Oct 31 2018

%C Primes p such that p^3 | a(p-1) are the Wolstenholme primes A088164. - _Amiram Eldar_ and _Thomas Ordowski_, Aug 08 2019

%C Total number of left-to-right maxima (or minima) in all permutations of [n]. a(3) = 11 = 3+2+2+2+1+1: (1)(2)(3), (1)(3)2, (2)1(3), (2)(3)1, (3)12, (3)21. - _Alois P. Heinz_, Aug 01 2020

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.

%D A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identities 186-190.

%D N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover Publications, 1986, see page 2. MR0863284 (89d:41049)

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.

%D Shanzhen Gao, Permutations with Restricted Structure (in preparation).

%D K. Javorszky, Natural Orders: De Ordinibus Naturalibus, 2016, ISBN 978-3-99057-139-2.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A000254/b000254.txt">Table of n, a(n) for n = 0..449</a> (terms 0..100 from T. D. Noe)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H E. Barcucci, A. Del Lungo and R. Pinzani, <a href="http://dx.doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159 (1996), 29-42.

%H J.-L. Baril and S. Kirgizov, <a href="http://jl.baril.u-bourgogne.fr/Stirling.pdf">The pure descent statistic on permutations</a>, preprint, 2016.

%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/St000031">The number of cycles in the cycle decomposition of a permutation</a>.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=31">Encyclopedia of Combinatorial Structures 31</a>.

%H Sergey Kitaev and Jeffrey Remmel, <a href="http://arxiv.org/abs/1201.1323">Simple marked mesh patterns</a>, arXiv:1201.1323 [math.CO], 2012.

%H Sergey Kitaev and Jeffrey Remmel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Kitaev/kitaev5.html">Quadrant Marked Mesh Patterns</a>, J. Int. Seq. 15 (2012), #12.4.7.

%H Chanchal Kumar and Amit Roy, <a href="https://arxiv.org/abs/2003.10098">Integer Sequences and Monomial Ideals</a>, arXiv:2003.10098 [math.CO], 2020.

%H Mircea Merca, <a href="http://dx.doi.org/10.1007/s10998-014-0034-3">Some experiments with complete and elementary symmetric functions</a>, Periodica Mathematica Hungarica, 69 (2014), 182-189.

%H J. Riordan, <a href="/A000254/a000254.pdf">Letter of 04/11/74</a>.

%H John A. Rochowicz Jr., <a href="http://epublications.bond.edu.au/ejsie/vol8/iss2/4">Harmonic Numbers: Insights, Approximations and Applications</a>, Spreadsheets in Education (eJSiE), 8(2) (2015), Article 4.

%H N. A. Rosenberg, <a href="https://doi.org/10.1086/380416">Informativeness of genetic markers for inference of ancestry</a>, American Journal of Human Genetics 73 (2003), 1402-1422.

%H M. D. Schmidt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html">Generalized j-Factorial Functions, Polynomials, and Applications</a>, J. Int. Seq. 13 (2010), #10.6.7, Section 4.3.2.

%H J. Scholes, <a href="http://www.kalva.demon.co.uk/putnam/psoln/psol9211.html">53rd Putnam 1992, Problem B5</a>.

%H J. Ser, <a href="/A002720/a002720_4.pdf">Les Calculs Formels des Séries de Factorielles</a>, Gauthier-Villars, Paris, 1933 [Local copy].

%H J. Ser, <a href="/A002720/a002720.pdf">Les Calculs Formels des Séries de Factorielles</a>. (Annotated scans of some selected pages)

%H Jun Yan, <a href="https://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv:2404.07958 [math.CO], 2024. See p. 5.

%F Let P(n,X) = (X+1)*(X+2)*(X+3)*...*(X+n); then a(n) is the coefficient of X; or a(n) = P'(n,0). - _Benoit Cloitre_, May 09 2002

%F Sum_{k > 0} a(k) * x^k/ k!^2 = exp(x) *(Sum_{k>0} (-1)^(k+1) * x^k / (k * k!)). - _Michael Somos_, Mar 24 2004; corrected by _Warren D. Smith_, Feb 12 2006

%F a(n) is the coefficient of x^(n+2) in (-log(1-x))^2, multiplied by (n+2)!/2.

%F a(n) = n! * Sum_{i=1..n} 1/i = n! * H(n), where H(n) = A001008(n)/A002805(n) is the n-th harmonic number.

%F a(n) ~ 2^(1/2)*Pi^(1/2)*log(n)*n^(1/2)*e^-n*n^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002

%F E.g.f.: log(1 - x) / (x-1). (= (log(1 - x))^2 / 2 if offset 1). - _Michael Somos_, Feb 05 2004

%F D-finite with recurrence: a(n) = a(n-1) * (2*n - 1) - a(n-2) * (n - 1)^2, if n > 1. - _Michael Somos_, Mar 24 2004

%F a(n) = A081358(n)+A092691(n). - _Emeric Deutsch_, Aug 12 2004

%F a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*binomial(n, k)/k. - _Vladeta Jovovic_, Jan 29 2005

%F p^2 divides a(p-1) for prime p > 3. a(n) = (Sum_{i=1..n} 1/i) / Product_{i=1..n} 1/i. - _Alexander Adamchuk_, Jul 11 2006

%F a(n) = 3* A001710(n) + 2* A001711(n-3) for n > 2; e.g., 11 = 3*3 + 2*1, 50 = 3*12 + 2*7, 274 = 3*60 + 2*47, ... - _Gary Detlefs_, May 24 2010

%F a(n) = A138772(n+1) - A159324(n). - _Gary Detlefs_, Jul 05 2010

%F a(n) = A121633(n) + A002672(n). - _Gary Detlefs_, Jul 18 2010

%F a(n+1) = Sum_{i=1..floor((n-1)/2)} n!/((n-i)*i) + Sum_{i=ceiling(n/2)..floor(n/2)} n!/(2*(n-i)*i). - _Shanzhen Gao_, Sep 14 2010

%F From _Gary Detlefs_, Sep 11 2010: (Start)

%F a(n) = (a(n-1)*(n^2 - 2*n + 1) + (n + 1)!)/(n - 1) for n > 2.

%F It appears that, with the exception of n = 2, (a(n+1)^2 - a(n)^2) mod n^2 = 0 if n is composite and 4*n if n is prime.

%F It appears that, with the exception of n = 2, (a(n+1)^3 - a(n)^2) mod n = 0 if n is composite and n - 2 if n is prime.

%F It appears that, with the exception of n = 2, (a(n)^2 + a(n+1)^2) mod n = 0 if n is composite and = 2 if n is prime. (End)

%F a(n) = Integral_{x=0..oo} (x^n - n!)*log(x)*exp(-x) dx. - _Groux Roland_, Mar 28 2011

%F a(n) = 3*n!/2 + 2*(n-2)!*Sum_{k=0..n-3} binomial(k+2,2)/(n-2-k) for n >= 2. - _Gary Detlefs_, Sep 02 2011

%F a(n)/(n-1)! = ml(n) = n*ml(n-1)/(n-1) + 1 for n > 1, where ml(n) is the average number of random draws from an n-set with replacement until the total set has been observed. G.f. of ml: x*(1 - log(1 - x))/(1 - x)^2. - _Paul Weisenhorn_, Nov 18 2011

%F a(n) = det(|S(i+2, j+1)|, 1 <= i,j <= n-2), where S(n,k) are Stirling numbers of the second kind. - _Mircea Merca_, Apr 06 2013

%F E.g.f.: x/(1 - x)*E(0)/2, where E(k) = 2 + E(k+1)*x*(k + 1)/(k + 2). - _Sergei N. Gladkovskii_, Jun 01 2013 [Edited by _Michael Somos_, Nov 28 2013]

%F 0 = a(n) * (a(n+4) - 6*a(n+3) + 7*a(n+2) - a(n+1)) - a(n+1) * (4*a(n+3) - 6*a(n+2) + a(n+1)) + 3*a(n+2)^2 unless n=0. - _Michael Somos_, Nov 28 2013

%F For a simple way to calculate the sequence, multiply n! by the integral from 0 to 1 of (1 - x^n)/(1 - x) dx. - _Rahul Jha_, Feb 18 2015

%F From _Ilya Gutkovskiy_, Aug 07 2016: (Start)

%F Inverse binomial transform of A073596.

%F a(n) ~ sqrt(2*Pi*n) * n^n * (log(n) + gamma)/exp(n), where gamma is the Euler-Mascheroni constant A001620. (End)

%F a(n) = ((-1)^(n+1)/2*(n+1))*Sum_{k=1..n} k*Bernoulli(k-1)*Stirling1(n,k). - _Vladimir Kruchinin_, Nov 20 2016

%F a(n) = (n)! * (digamma(n+1) + gamma), where gamma is the Euler-Mascheroni constant A001620. - _Pedro Caceres_, Mar 10 2018

%F From _Andy Nicol_, Oct 21 2021: (Start)

%F Gamma'(x) = a(x-1) - (x-1)!*gamma, where Gamma'(x) is the derivative of the gamma function at positive integers and gamma is the Euler-Mascheroni constant. E.g.:

%F Gamma'(1) = -gamma, Gamma'(2) = 1-gamma, Gamma'(3) = 3-2*gamma,

%F Gamma'(22) = 186244810780170240000 - 51090942171709440000*gamma. (End)

%F From _Peter Bala_, Feb 03 2022: (Start)

%F The following are all conjectural:

%F E.g.f.: for nonzero m, (1/m)*Sum_{n >= 1} (-1)^(n+1)*(1/n)*binomial(m*n,n)* x^n/(1 - x)^(m*n+1) = x + 3*x^2/2! + 11*x^3/3! + 50*x^4/4! + ....

%F For nonzero m, a(n) = (1/m)*n!*Sum_{k = 1..n} (-1)^(k+1)*(1/k)*binomial(m*k,k)* binomial(n+(m-1)*k,n-k).

%F a(n)^2 = (1/2)*n!^2*Sum_{k = 1..n} (-1)^(k+1)*(1/k^2)*binomial(n,k)* binomial(n+k,k). (End)

%F From _Mélika Tebni_, Jun 20 2022: (Start)

%F a(n) = -Sum_{k=0..n} k!*A021009(n, k+1).

%F a(n) = Sum_{k=0..n} k!*A094587(n, k+1). (End)

%F a(n) = n! * 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n - 1)^2/((2*n - 1)))))). - _Peter Bala_, Mar 16 2024

%e (1-x)^-1 * (-log(1-x)) = x + 3/2*x^2 + 11/6*x^3 + 25/12*x^4 + ...

%e G.f. = x + x^2 + 5*x^3 + 14*x^4 + 94*x^5 + 444*x^6 + 3828*x^7 + 25584*x^8 + ...

%p A000254 := proc(n) option remember; if n<=1 then n else n*A000254(n-1)+(n-1)!; fi; end: seq(A000254(n),n=0..21);

%p a := n -> add(n!/k, k=1..n): seq(a(n), n=0..21); # _Zerinvary Lajos_, Jan 22 2008

%t Table[ (PolyGamma[ m ]+EulerGamma) (m-1)!, {m, 1, 24} ] (* _Wouter Meeussen_ *)

%t Table[ n!*HarmonicNumber[n], {n, 0, 19}] (* _Robert G. Wilson v_, May 21 2005 *)

%t Table[Sum[1/i,{i,1,n}]/Product[1/i,{i,1,n}],{n,1,30}] (* _Alexander Adamchuk_, Jul 11 2006 *)

%t Abs[StirlingS1[Range[20],2]] (* _Harvey P. Dale_, Aug 16 2011 *)

%t Table[Gamma'[n + 1] /. EulerGamma -> 0, {n, 0, 30}] (* _Li Han_, Feb 14 2024*)

%o (MuPAD) A000254 := proc(n) begin n*A000254(n-1)+fact(n-1) end_proc: A000254(1) := 1:

%o (PARI) {a(n) = if( n<0, 0, (n+1)! / 2 * sum( k=1, n, 1 / k / (n+1-k)))} /* _Michael Somos_, Feb 05 2004 */

%o (Sage) [stirling_number1(i, 2) for i in range(1, 22)] # _Zerinvary Lajos_, Jun 27 2008

%o (Maxima)

%o a(n):=(-1)^(n+1)/2*(n+1)*sum(k*bern(k-1)*stirling1(n,k),k,1,n); /* _Vladimir Kruchinin_, Nov 20 2016 */

%o (Magma) a:=[]; for n in [1..22] do a:=a cat [Abs(StirlingFirst(n,2))]; end for; a; // _Marius A. Burtea_, Jan 01 2020

%Y Cf. A000399, A000454, A000482, A001233, A001234, A243569, A243570.

%Y Cf. A000774, A004041, A024167, A046674, A049034, A008275.

%Y Cf. A021009, A081358, A092691, A094587, A151881, A121633.

%Y With signs: A081048.

%Y Column 1 in triangle A008969.

%Y Row sums of A136662.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 15:27 EDT 2024. Contains 372603 sequences. (Running on oeis4.)