The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000248 Expansion of e.g.f. exp(x*exp(x)).
(Formerly M2857 N1148)
104

%I M2857 N1148 #157 Feb 20 2023 09:07:20

%S 1,1,3,10,41,196,1057,6322,41393,293608,2237921,18210094,157329097,

%T 1436630092,13810863809,139305550066,1469959371233,16184586405328,

%U 185504221191745,2208841954063318,27272621155678841,348586218389733556,4605223387997411873

%N Expansion of e.g.f. exp(x*exp(x)).

%C Number of forests with n nodes and height at most 1.

%C Equivalently, number of idempotent mappings f from a set of n elements into itself (i.e., satisfying f o f = f). - _Robert FERREOL_, Oct 11 2007

%C In other words, a(n) = number of idempotents in the full semigroup of maps from [1..n] to itself. [Tainiter]

%C a(n) is the number of ways to select a set partition of {1,2,...,n} and then designate one element in each block (cell) of the partition.

%C Let set B have cardinality n. Then a(n) is the number of functions f:D->C over all partitions {D,C} of B. See the example in the Example Section below. We note that f:empty set->B is designated as the null function, whereas f:B->empty set is undefined unless B itself is empty. - _Dennis P. Walsh_, Dec 05 2013

%C In physics, a(n) would be interpreted as the number of projection operators P on S_n, i.e., ones satisfying P^2 = P. Example: a particle with a half-integer spin s has a spin space with 2s+1 base states which admits a(2s+1) linear projection operators (including the identity). These are important because they satisfy the operator identity exp(zU) = 1+(exp(z)-1)*U, valid for any complex z. - _Stanislav Sykora_, Nov 03 2016

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.32(d).

%H Alois P. Heinz, <a href="/A000248/b000248.txt">Table of n, a(n) for n = 0..541</a> (first 101 terms from T. D. Noe)

%H Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2112.11595">Pseudo-involutions in the Riordan group</a>, arXiv:2112.11595 [math.CO], 2021.

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 131.

%H Xing Gao and William F. Keigher, <a href="https://doi.org/10.1080/00927872.2016.1226885">Interlacing of Hurwitz series</a>, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885. See Ex. 2.13.

%H B. Harris and L. Schoenfeld, <a href="http://dx.doi.org/10.1016/S0021-9800(67)80002-4">The number of idempotent elements in symmetric semigroups</a>, J. Combin. Theory, 3 (1967), 122-135.

%H Bernard Harris and Lowell Schoenfeld, <a href="http://projecteuclid.org/euclid.ijm/1256054216">Asymptotic expansions for the coefficients of analytic functions</a>, Illinois Journal of Mathematics, Volume 12, Issue 2 (1968), 264-277.

%H G. Helms, <a href="http://go.helms-net.de/math/tetdocs/PascalMatrixTetrated.pdf">Pascalmatrix tetrated</a> [From _Gottfried Helms_, Feb 04 2009]

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=117">Encyclopedia of Combinatorial Structures 117</a>

%H Vaclav Kotesovec, <a href="/A000248/a000248.jpg">Graph - the asymptotic ratio (1000 terms)</a>

%H Nate Kube and Frank Ruskey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Ruskey/ruskey99.html">Sequences That Satisfy a(n-a(n))=0</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.

%H J. Riordan, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80033-X">Forests of labeled trees</a>, J. Combin. Theory, 5 (1968), 90-103.

%H J. Riordan, <a href="/A001861/a001861.pdf">Letter to N. J. A. Sloane, Oct. 1970</a>

%H John Riordan and N. J. A. Sloane, <a href="/A003471/a003471_1.pdf">Correspondence, 1974</a>

%H Emre Sen, <a href="https://arxiv.org/abs/1909.05887">Exceptional Sequences and Idempotent Functions</a>, arXiv:1909.05887 [math.RT], 2019.

%H M. Tainiter, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80012-2">A characterization of idempotents in semigroups</a>, J. Combinat. Theory, 5 (1968), 370-373.

%H Haoliang Wang and Robert Simon, <a href="https://doi.org/10.1145/3267129.3267134">The Analysis of Synchronous All-to-All Communication Protocols for Wireless Systems</a>, Q2SWinet'18: Proceedings of the 14th ACM International Symposium on QoS and Security for Wireless and Mobile Networks (2018), 39-48.

%F G.f.: Sum_{k>=0} x^k/(1-k*x)^(k+1). - _Vladeta Jovovic_, Oct 25 2003

%F a(n) = Sum_{k=0..n} C(n,k)*(n-k)^k. - _Paul D. Hanna_, Jun 26 2009

%F G.f.: G(0) where G(k) = 1 - x*(-1+2*k*x)^(2*k+1)/((x-1+2*k*x)^(2*k+2) - x*(x-1+2*k*x)^(4*k+4)/(x*(x-1+2*k*x)^(2*k+2) - (2*x-1+2*k*x)^(2*k+3)/G(k+1))) (continued fraction). - _Sergei N. Gladkovskii_, Jan 26 2013

%F E.g.f.: 1 + x/(1+x)*(G(0) - 1) where G(k) = 1 + exp(x)/(k+1)/(1-x/(x+(1)/G(k+1))) (continued fraction). - _Sergei N. Gladkovskii_, Feb 04 2013

%F Recurrence: a(0)=1, a(n) = Sum_{k=1..n} binomial(n-1,k-1)*k*a(n-k). - _James East_, Mar 30 2014

%F Asymptotics (Harris and Schoenfeld, 1968): a(n) ~ sqrt((r+1)/(2*Pi*(n+1)*(r^2+3*r+1))) * n! * exp((n+1)/(r+1)) / r^n, where r is the root of the equation r*(r+1)*exp(r) = n+1. - _Vaclav Kotesovec_, Jul 13 2014

%F a(n) = Sum_{k=0..n} A005727(k)*Stirling2(n, k). - _Mélika Tebni_, Jun 12 2022

%F More precise asymptotics: a(n) ~ n^(n + 1/2) / (sqrt(1 + 3*r + r^2) * exp(n - r*exp(r) + r/2) * r^(n + 1/2)), where r = 2*w - 1/(2*w) + 5/(8*w^2) - 19/(24*w^3) + 209/(192*w^4) - 763/(480*w^5) + 4657/(1920*w^6) - 6855/(1792*w^7) + 199613/(32256*w^8) + ... and w = LambertW(sqrt(n)/2). - _Vaclav Kotesovec_, Feb 20 2023

%e a(3)=10 since, for B={1,2,3}, we have 10 functions: 1 function of the type f:empty set->B; 6 functions of the type f:{x}->B\{x}; and 3 functions of the type f:{x,y}->B\{x,y}. - _Dennis P. Walsh_, Dec 05 2013

%p A000248 := proc(n) local k; add(k^(n-k)*binomial(n, k), k=0..n); end; # _Robert FERREOL_, Oct 11 2007

%p a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j) *(j+1) *a(n-1-j), j=0..n-1) fi end: seq(a(n), n=0..20); # _Zerinvary Lajos_, Mar 28 2009

%t CoefficientList[Series[Exp[x Exp[x]],{x,0,20}],x]*Table[n!,{n,0,20}]

%t a[0] = 1; a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[(Binomial[n - 1, j] + (n - 1) Binomial[n - 2, j]) a[j], {j, 0, n - 2}]; Table[a[n], {n, 0, 20}] (* _David Callan_, Oct 04 2013 *)

%t Flatten[{1,Table[Sum[Binomial[n,k]*(n-k)^k,{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Jul 13 2014 *)

%t Table[Sum[BellY[n, k, Range[n]], {k, 0, n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 09 2016 *)

%o (PARI) a(n)=sum(k=0,n,binomial(n,k)*(n-k)^k); \\ _Paul D. Hanna_, Jun 26 2009

%o (PARI) x='x+O('x^66); Vec(serlaplace(exp(x*exp(x)))) \\ _Joerg Arndt_, Oct 06 2013

%o (Sage) # uses[bell_matrix from A264428]

%o B = bell_matrix(lambda k: k+1, 20)

%o print([sum(B.row(n)) for n in range(20)]) # _Peter Luschny_, Sep 03 2019

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // _Vincenzo Librandi_, Feb 01 2020

%Y First row of array A098697.

%Y Row sums of A133399.

%Y Column k=1 of A210725, A279636.

%Y Column k=2 of A245501.

%Y Cf. A005727, A048993.

%K easy,nonn,nice

%O 0,3

%A _N. J. A. Sloane_, _Simon Plouffe_

%E In view of the multiple appearances of this sequence, I replaced the definition with the simple exponential generating function. - _N. J. A. Sloane_, Apr 16 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 02:29 EDT 2024. Contains 372720 sequences. (Running on oeis4.)