The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000188 (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d). 147

%I #163 Jan 28 2024 08:49:18

%S 1,1,1,2,1,1,1,2,3,1,1,2,1,1,1,4,1,3,1,2,1,1,1,2,5,1,3,2,1,1,1,4,1,1,

%T 1,6,1,1,1,2,1,1,1,2,3,1,1,4,7,5,1,2,1,3,1,2,1,1,1,2,1,1,3,8,1,1,1,2,

%U 1,1,1,6,1,1,5,2,1,1,1,4,9,1,1,2,1,1,1,2,1,3

%N (1) Number of solutions to x^2 == 0 (mod n). (2) Also square root of largest square dividing n. (3) Also max_{ d divides n } gcd(d, n/d).

%C Shadow transform of the squares A000290. - _Vladeta Jovovic_, Aug 02 2002

%C _Labos Elemer_ and _Henry Bottomley_ independently proved that (2) and (3) define the same sequence. Bottomley also showed that (1) and (2) define the same sequence.

%C Proof that (2) = (3): Let max{gcd(d, n/d)} = K, then d = Kx, n/d = Ky so n = KKxy where xy is the squarefree part of n, otherwise K is not maximal. Observe also that g = gcd(K, xy) is not necessarily 1. Thus K is also the "maximal square-root factor" of n. - _Labos Elemer_, July 2000

%C We can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), lcm(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n. [The relation with LCM is wrong if b is not squarefree. One must, e.g., replace b with A007947(b). - _M. F. Hasler_, Mar 03 2018]

%H T. D. Noe, <a href="/A000188/b000188.txt">Table of n, a(n) for n = 1..10000</a>

%H Henry Bottomley, <a href="http://fs.gallup.unm.edu/Bottomley-Sm-Mult-Functions.htm">Some Smarandache-type multiplicative sequences</a>.

%H Kevin A. Broughan, <a href="http://www.math.waikato.ac.nz/~kab/papers/div4.pdf">Restricted divisor sums</a>, preprint.

%H Kevin A. Broughan, <a href="https://doi.org/10.4064/aa101-2-2">Restricted divisor sums</a>, Acta Arithmetica, 101(2) (2002), 105-114.

%H Kevin A. Broughan, <a href="http://ijpam.eu/contents/2003-5-3/2/2.pdf">Relationship between the integer conductor and k-th root functions</a>, Int. J. Pure Appl. Math. 5(3) (2003), 253-275.

%H Kevin A. Broughan, <a href="http://nzjm.math.auckland.ac.nz/images/d/d6/Relaxations_of_the_ABC_Conjecture_using_integer_k%27th_roots.pdf">Relaxations of the ABC Conjecture using integer k'th roots</a>, New Zealand J. Math. 35(2) (2006), 121-136.

%H John M. Campbell, <a href="http://arxiv.org/abs/1105.3399">An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences</a>, arXiv preprint arXiv:1105.3399 [math.GM], 2011.

%H Steven R. Finch and Pascal Sebah, <a href="https://arxiv.org/abs/math/0604465">Squares and Cubes Modulo n</a>, arXiv:math/0604465 [math.NT], 2006-2016.

%H Vaclav Kotesovec, <a href="/A000188/a000188.jpg">Graph - the asymptotic ratio (100000 terms)</a>

%H Gerry Myerson, <a href="http://www.austms.org.au/Publ/Gazette/2008/Jul08/TechPaperMyerson.pdf">Trifectas in Geometric Progression</a>, Australian Mathematical Society Gazette 35(3) (2008), 189-194

%H Andrew Reiter, <a href="http://www.cw-complex.com/modNspirals/modNspirals.pdf">On (mod n) spirals</a> (2014), and posting to Number Theory Mailing List, Mar 23 2014.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H Florentin Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/CP2.pdf">Collected Papers, Vol. II</a>, Tempus Publ. Hse, Bucharest, 1996.

%H László Tóth, <a href="http://arxiv.org/abs/1404.4214">Counting solutions of quadratic congruences in several variables revisited</a>, arXiv preprint arXiv:1404.4214 [math.NT], 2014.

%H László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Toth/toth12.html">Counting Solutions of Quadratic Congruences in Several Variables Revisited</a>, J. Int. Seq. 17 (2014), # 14.11.6.

%F a(n) = n/A019554(n) = sqrt(A008833(n)).

%F a(n) = Sum_{d^2|n} phi(d), where phi is the Euler totient function A000010.

%F Multiplicative with a(p^e) = p^floor(e/2). - _David W. Wilson_, Aug 01 2001

%F Dirichlet series: Sum_{n >= 1} a(n)/n^s = zeta(2*s - 1)*zeta(s)/zeta(2*s), (Re(s) > 1).

%F Dirichlet convolution of A037213 and A008966. - _R. J. Mathar_, Feb 27 2011

%F Finch & Sebah show that the average order of a(n) is 3 log n/Pi^2. - _Charles R Greathouse IV_, Jan 03 2013

%F a(n) = sqrt(n/A007913(n)). - _M. F. Hasler_, May 08 2014

%F Sum_{n>=1} lambda(n)*a(n)*x^n/(1-x^n) = Sum_{n>=1} n*x^(n^2), where lambda() is the Liouville function A008836 (cf. A205801). - _Mamuka Jibladze_, Feb 15 2015

%F a(2*n) = a(n)*(A096268(n-1) + 1). - observed by _Velin Yanev_, Jul 14 2017, The formula says that a(2n) = 2*a(n) only when 2-adic valuation of n (A007814(n)) is odd, otherwise a(2n) = a(n). This follows easily from the definition (2). - _Antti Karttunen_, Nov 28 2017

%F Sum_{k=1..n} a(k) ~ 3*n*((log(n) + 3*gamma - 1)/Pi^2 - 12*zeta'(2)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Dec 01 2020

%F Conjecture: a(n) = Sum_{k=1..n} A010052(n*k). - _Velin Yanev_, Jul 04 2021

%F G.f.: Sum_{k>=1} phi(k) * x^(k^2) / (1 - x^(k^2)). - _Ilya Gutkovskiy_, Aug 20 2021

%e a(8) = 2 because the largest square dividing 8 is 4, the square root of which is 2.

%e a(9) = 3 because 9 is a perfect square and its square root is 3.

%e a(10) = 1 because 10 is squarefree.

%p with(numtheory):A000188 := proc(n) local i: RETURN(op(mul(i,i=map(x->x[1]^floor(x[2]/2),ifactors(n)[2])))); end;

%t Array[Function[n, Count[Array[PowerMod[#, 2, n ] &, n, 0 ], 0 ] ], 100]

%t (* Second program: *)

%t nMax = 90; sList = Range[Floor[Sqrt[nMax]]]^2; Sqrt[#] &/@ Table[ Last[ Select[ sList, Divisible[n, #] &]], {n, nMax}] (* _Harvey P. Dale_, May 11 2011 *)

%t a[n_] := With[{d = Divisors[n]}, Max[GCD[d, Reverse[d]]]] (* _Mamuka Jibladze_, Feb 15 2015 *)

%t f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 18 2020 *)

%o (PARI) a(n)=if(n<1,0,sum(i=1,n,i*i%n==0))

%o (PARI) a(n)=sqrtint(n/core(n)) \\ _Zak Seidov_, Apr 07 2009

%o (PARI) a(n)=core(n, 1)[2] \\ _Michel Marcus_, Feb 27 2013

%o (Haskell)

%o a000188 n = product $ zipWith (^)

%o (a027748_row n) $ map (`div` 2) (a124010_row n)

%o -- _Reinhard Zumkeller_, Apr 22 2012

%o (Python)

%o from sympy.ntheory.factor_ import core

%o from sympy import integer_nthroot

%o def A000188(n): return integer_nthroot(n//core(n),2)[0] # _Chai Wah Wu_, Jun 14 2021

%Y Cf. A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A053166 (outer 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

%Y Cf. A000189, A000190, A007947, A008833, A027748, A046951, A055210, A007913, A117811, A124010. For partial sums see A120486.

%Y Cf. A240976 (Dgf at s=2).

%K nonn,easy,nice,mult

%O 1,4

%A _N. J. A. Sloane_

%E Edited by _M. F. Hasler_, May 08 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 10:10 EDT 2024. Contains 373092 sequences. (Running on oeis4.)