## All

An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series

English, Euler number, Mathematics, Advance, 26 Jul 10 Alternating permutation, Academic Paper
In this paper, I will derive an explicit formula for the Euler zigzag numbers (Up/down numbers). Euler zigzag number is the number of alternating permutation in a set. Therefore the explicit formula of Euler numbers(Secant numbers) and Bernoulli numbers are found as well. The formula involves two finite sum.
(4) SHARE


Euler zigzag numbers, $A_{n}$, is the number of alternating permutation of the set $\{1,2, \ldots, \mathrm{n}\}$. And it is well known that:
$\sec x+\tan x=\sum_{n=0}^{\infty} \frac{A_{n}}{n!} x^{n}$
In the following section, I am going to derive an explicit formula of $A_{n}$ by using power series expansion.

$$
\text { Integrand of } \sec (x)+\tan (x)
$$

Let's consider the integrand of $\sec (x)+\tan (x)$ :

## Page Info

15
Impacts
0 /0 rates
3293
Your Rating:

Version: 6
Last update: 02 Sep 10
History Permalink
Author


Ross Tang (ross_tang)

Degree in Physics and Mathematics, Master
in Physics
香港
Mathematics 809
Euler number 0
Alternating permutation 0

## Related

Repeated sum and partial difference equation

Explore exciting communities of Euler number, Mathematics, Alternating permutation,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{A_{n}}{n!} \int_{0}^{x} y^{n} d y & =\int_{0}^{x}(\sec y+\tan y) d y \\
\sum_{n=1}^{\infty} \frac{A_{n-1}}{n!} x^{n} & =\int_{0}^{x} \frac{1+\sin y}{\cos y} d y \\
& =\int_{0}^{x} \frac{(1+\sin y)(1-\sin y)}{\cos y(1-\sin y)} d y \\
& =\int_{0}^{x} \frac{\cos y d y}{1-\sin y} \\
& =-\ln (1-\sin x)
\end{aligned}
$$

Let:
$f(x)=-\ln (1-\sin x)$
I will do a power expansion of the function $f(x)$, and a finite sum explicit formula for $A_{n}$ can be found by some simplification.

## Power Series Expansion of $f(x)$

$$
\begin{aligned}
f(x) & =-\ln (1-\sin y) \\
& =\sum_{n=1}^{\infty} \frac{\sin ^{n} y}{n} \\
& =\sum_{n=1}^{\infty} \frac{\left(e^{i y}-e^{-i y}\right)^{n}}{2^{n} i^{n} n} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n} e^{(n-k) i y} e^{-i k y}(-1)^{k}}{2^{n} i^{n} n} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n} e^{(n-2 k) i y}(-1)^{k}}{2^{n} i^{n} n} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n}(-1)^{k}}{2^{n} i^{n} n} \sum_{j=0}^{\infty} \frac{(n-2 k)^{j} i^{j} y^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n}(n-2 k)^{j} i^{j}(-1)^{k}}{2^{n} i^{n} j!n} y^{j}
\end{aligned}
$$

Therefore, by equating coefficients, we have:

$$
A_{j-1}=i^{j} \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n}(n-2 k)^{j}(-1)^{k}}{2^{n} i^{n} n}
$$

or
$A_{j}=i^{j+1} \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{C_{k}^{n}(n-2 k)^{j+1}(-1)^{k}}{2^{n} i^{n} n}$
$e^{\wedge}$-lambda/2 $e^{\wedge} A e^{\wedge} B$ if
[A,B]=lambda
Solving linear non-homogeneous ordinary differential equation with variable coefficients with operator method
Solving a partial difference equation in 2 variables with operator method Solving recurrence equation with indexes from negative infinity to positive infinity

Reducing a partial difference equation into a partial differential equation and solving for the generating function using method of characteristics
Binomial Expansion for non-commutative elements $(A+B)^{\wedge} n$ where $[A, B]=$ lambda Finding nth derivative of the function $\sec x+\tan x$ and partial difference equation

A procedure to list all derangements of a multiset

A free ebook about generating function, "generatingfunctionology"

[^0]equals to:
$A_{j}=i^{j+1} \sum_{n=1}^{j+1} \sum_{k=0}^{n} \frac{C_{k}^{n}(n-2 k)^{j+1}(-1)^{k}}{2^{n} i^{n} n}$

## Simplification

In order to reduce the infinite sum to a finite sum, I first let:
$B_{n}^{j}=\sum_{k=0}^{n} C_{k}^{n}(n-2 k)^{j}(-1)^{k}$
So that:
$A_{j}=i^{j+1} \sum_{n=1}^{\infty} \frac{B_{n}^{j+1}}{2^{n} i^{n} n}$
I observed that:
$B_{n}^{j}=0$ if $n>j$
To show that, let's define the translational operator $D$ such that:
$\left\{\begin{array}{l}D a_{n}=a_{n+1} \\ D^{-1} a_{n}=a_{n-1}\end{array}\right.$
Then:

$$
\begin{aligned}
B_{n}^{j} & =\left(\sum_{k=0}^{n} C_{k}^{n}(-1)^{k} D^{-2 k}\right) n^{j} \\
& =\left(1-D^{-2}\right)^{n} n^{j} \\
& =\left(1+D^{-1}\right)^{n}\left(1-D^{-1}\right)^{n} n^{j}
\end{aligned}
$$

Here, $\nabla=1-D^{-1}$ is the backward difference operator.
Now, consider:

$$
\begin{aligned}
\nabla n^{j} & =n^{j}-(n-1)^{j} \\
& =n^{j}-\sum_{k=0}^{j} C_{k}^{j}(-1)^{j-k} n^{k} \\
& =-\sum_{k=0}^{j-1} C_{k}^{j}(-1)^{j-k} n^{k}
\end{aligned}
$$

The result is a polynomial of degree $j-1$. We can see that, if we apply backward difference operator to a polynomial, its degree decreases by 1 . Therefore, if we apply the backward difference operator for a number of time which is larger than the degree of a polynomial, the result is zero.

Explore exciting communities of Euler number, Mathematics, Alternating permutation,

As a result, we have $B_{n}^{j}=0$ if $n>j$. Therefore:
$A_{j}=i^{j+1} \sum_{n=1}^{j+1} \sum_{k=0}^{n} \frac{C_{k}^{n}(n-2 k)^{j+1}(-1)^{k}}{2^{n} i^{n} n}$

## Explicit Formula for Euler number

Euler number $E_{n}$ is given by the generating function:

$$
\begin{aligned}
\frac{1}{\cosh t} & =\frac{2}{e^{t}+e^{-t}} \\
& =\sum_{n=0}^{\infty} \frac{E_{n}}{n!} t^{n}
\end{aligned}
$$

And it is given by:

$$
\begin{cases}E_{2 n} & =i \sum_{k=1}^{2 n+1} \sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{j}(k-2 j)^{2 n+1}}{2^{k} i^{k} k} \\ E_{2 n+1} & =0\end{cases}
$$

## Explicit Formula for Bernoulli Numbers

From Wikipedia, we know:

$$
B_{2 n}=\frac{(-1)^{n-1} 2 n}{4^{2 n}-2^{2 n}} A_{2 n-1}
$$

Therefore:

$$
\begin{cases}B_{0}=1 & \\ B_{1}=-\frac{1}{2} & \\ B_{2 n}=\frac{2 n}{2^{2 n}-4^{2 n}} \sum_{k=1}^{2 n} \sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{j}(k-2 j)^{2 n}}{2^{k} i^{k} k} & \text { for } n>0 \\ B_{2 n+1}=0 & \text { for } n>0\end{cases}
$$

## Conclusion

I have found out an simple formula for the Euler zigzag number:
$A_{n}=i^{n+1} \sum_{k=1}^{n+1} \sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{j}(k-2 j)^{n+1}}{2^{k} i^{k} k}$

## 0 Comments

| Impact | Reply | Newest |
| :--- | :--- | :--- |
| Oldest |  |  |

Please login to post comment.

Explore exciting communities of Euler number, Mathematics, Alternating permutation,

## What is Voofie?

Voofie organizes knowledge, discovers useful resources and recognizes knowledgable users.

Bookmark your blog in Voofie to get more traffic as well as building a reputation in your field!

Explore more about it. Become a member-our FREE Registration takes just seconds.

About Voofie | FAQ | Terms | Privacy © Voofie Limited


[^0]:    Ninu, I am nainn to -imnlifi, it and -hnin.that it in ant..all.,
    Explore exciting communities of Euler number, Mathematics, Alternating permutation ,

