login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000055 Number of trees with n unlabeled nodes.
(Formerly M0791 N0299)
225
1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Also, number of unlabeled 2-gonal 2-trees with n 2-gons.
Main diagonal of A054924.
Left border of A157905. - Gary W. Adamson, Mar 08 2009
From Robert Munafo, Jan 24 2010: (Start)
Also counts classifications of n items that require exactly n-1 binary partitions; see Munafo link at A005646, also A171871 and A171872.
The 11 trees for n = 7 are illustrated at the Munafo web link.
Link to A171871/A171872 conjectured by Robert Munafo, then proved by Andrew Weimholt and Franklin T. Adams-Watters on Dec 29 2009. (End)
This is also "Number of tree perfect graphs on n nodes" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
For n > 0, a(n) is the number of ways to arrange n-1 unlabeled non-intersecting circles on a sphere. - Vladimir Reshetnikov, Aug 25 2016
All trees for n=1 through n=12 are depicted in Chapter 1 of the Steinbach reference. On p. 6 appear encircled two trees (with n=10) which seem inequivalent only when considered as ordered (planar) trees. Earlier instances of such possibly (in)equivalent trees could appear from n=6 on (and from n=9 on without equivalence modulo plane symmetry) but are not drawn separately there. - M. F. Hasler, Aug 29 2017
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. J. Mathar and Robert G. Wilson v, Table of n, a(n) for n = 0..1000
Jeremy C. Adcock, Sam Morley-Short, Joshua W. Silverstone, and Mark G. Thompson, Hard limits on the postselectability of optical graph states, arXiv:1806.03263 [quant-ph], 2018.
H. R. Afshar, E. A. Bergshoeff, and W. Merbis, Interacting spin-2 fields in three dimensions, arXiv preprint arXiv:1410.6164 [hep-th], 2014-2015.
Ruggero Bandiera and Florian Schaetz, Eulerian idempotent, pre-Lie logarithm and combinatorics of trees, arXiv:1702.08907 [math.CO], 2017. Mentions this sequence.
Madeleine Burkhart and Joel Foisy, Enumerating spherical n-links, Involve, Vol. 11 (2018), No. 2, 195-206.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
CombOS - Combinatorial Object Server, Generate graphs
R. Ferrer-i-Cancho, Non-crossing dependencies: least effort, not grammar, arXiv preprint arXiv:1411.2645 [cs.CL], 2014.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 481.
Andrew Gainer-Dewar, Gamma-Species and the Enumeration of k-Trees, Electronic Journal of Combinatorics, Volume 19 (2012), #P45 and arXiv:1208.5993 [math.CO], 2012.
Xiangrui Gao, Song He, and Yong Zhang, Labelled tree graphs, Feynman diagrams and disk integrals arxiv:1708.08701 [hep-th], 2017, see p. 4.
Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
D. D. Grant, The stability index of graphs, pp. 29-52 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974. Gives first 45 terms.
Paul E. Gunnells, Generalized Catalan numbers from hypergraphs, arXiv:2102.05121 [math.CO], 2021. Mentions this sequence p. 3.
T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
House of Graphs, Trees
Andrew Jobbings, Enumerating nets, Preprint 2015.
Elena V. Konstantinova and Maxim V. Vidyuk, Discriminating tests of information and topological indices. Animals and trees, J. Chem. Inf. Comput. Sci. 43 (2003), 1860-1871. See Table 15, column 1 on page 1868.
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], 2003.
Steve Lawford and Yll Mehmeti, Cliques and a new measure of clustering: with application to U.S. domestic airlines, arXiv:1806.05866 [cs.SI], 2018.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
Gang Li, Generation of Rooted Trees and Free Trees, Comp. Sci. MSc thesis paper, 1996.
R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
Sebastian Piec, Krzysztof Malarz and Krzysztof Kulakowski. How to count trees?, arXiv:cond-mat/0501594 [cond-mat.stat-mech], 2005; Int. J. Modern Phys., C16 (2005) 1527-1534.
N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
J. M. Plotkin and J. W. Rosenthal, How to obtain an asymptotic expansion of a sequence from an analytic identity satisfied by its generating function, J. Austral. Math. Soc. (Series A), Vol. 56 (1994), 131-143.
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
Tanay Wakhare, Eric Wityk, and Charles R. Johnson. The proportion of trees that are linear, Discrete Mathematics 343.10 (2020): 112008. Also arXiv:1901.08502 [math.CO], 2019-2020. See Tables 1 and 2 (but beware errors).
Eric Weisstein's World of Mathematics, Tree
Pascal Welke, Tamás Horváth, and Stefan Wrobel, Probabilistic and exact frequent subtree mining in graphs beyond forests, Machine Learning (2019), 1-28.
Robert Alan Wright, Bruce Richmond, Andrew Odlyzko, and Brendan D. McKay, Constant Time Generation of Free Trees, SIAM Journal of Computing, vol. 15, no. 2, pp. 540-548, (1986) [preprint].
FORMULA
G.f.: A(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + ... is the g.f. for A000081.
a(n) ~ A086308 * A051491^n * n^(-5/2). - Vaclav Kotesovec, Jan 04 2013
a(n) = A000081(n) - A217420(n+1), n > 0. - R. J. Mathar, Sep 19 2016
a(n) = A000676(n)+A000677(n). - R. J. Mathar, Aug 13 2018
a(n) = A000081(n) - (Sum_{1<=i<=j, i+j=n} A000081(i)*A000081(j)) + (1-(-1)^(n-1)) * binomial(A000081(n/2)+1,2) / 2 [Li, equation 4.2]. - Walt Rorie-Baety, Jul 05 2021
EXAMPLE
a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o];
a(4) = 2 [o-o-o and o-o-o-o]
|
o
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
MAPLE
G000055 := series(1+G000081-G000081^2/2+subs(x=x^2, G000081)/2, x, 31); A000055 := n->coeff(G000055, x, n); # where G000081 is g.f. for A000081 starting with n=1 term
with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2):
seq(a(n), n=0..50);
# Alois P. Heinz, Aug 21 2008
# Program to create b-file b000055.txt:
A000081 := proc(n) option remember; local d, j;
if n <= 1 then n else
add(add(d*procname(d), d=numtheory[divisors](j))*procname(n-j), j=1..n-1)/(n-1);
fi end:
A000055 := proc(nmax) local a81, n, t, a, j, i ;
a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ;
for n from 0 to nmax do
if n = 0 then
t := 1+op(n+1, a81) ;
else
t := op(n+1, a81) ;
fi;
if type(n, even) then
t := t-op(1+n/2, a81)^2/2 ;
t := t+op(1+n/2, a81)/2 ;
fi;
for j from 0 to (n-1)/2 do
t := t-op(j+1, a81)*op(n-j+1, a81) ;
od:
a := [op(a), t] ;
od:
a end:
L := A000055(1000) ;
# R. J. Mathar, Mar 06 2009
MATHEMATICA
s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *)
b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
PROG
(PARI) {a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
(PARI)
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) )
\\ Joerg Arndt, Jul 10 2014
(Magma)
N := 30; P<x> := PowerSeriesRing(Rationals(), N+1); f := func< A | x*&*[Exp(Evaluate(A, x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G, x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
(SageMath)
[len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
(Haskell)
import Data.List (generic_index)
import Math.OEIS (getSequenceByID)
triangle x = (x * x + x) `div` 2
a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2}
in r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..]))
+ (1-nEO) * (triangle (r m + 1))
-- Walt Rorie-Baety, Jun 12 2021
(Python)
# uses function from A000081
def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1, n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
CROSSREFS
Cf. A000676 (centered trees), A000677 (bicentered trees), A027416 (trees with a centroid), A102011 (trees with a bicentroid), A034853 (refined by diameter), A238414 (refined by maximum vertex degree).
Cf. A000081 (rooted trees), A000272 (labeled trees), A000169 (labeled rooted trees), A212809 (radius of convergence).
Cf. A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A054581 (unlabeled 2-trees).
Cf. A157904, A157905, A005195 (Euler transform = forests), A095133 (multisets).
Column 0 of A335362 and A034799.
Related to A005646; see A171871 and A171872.
Sequence in context: A338355 A277796 A123465 * A217312 A006787 A176425
KEYWORD
nonn,easy,nice,core
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 09:04 EDT 2024. Contains 371799 sequences. (Running on oeis4.)