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Abstract

In this thesis, we examine the characteristics of edge-3-coloured cliques without rainbow triangles, then
obtain a recursive formula for the number of labelled graphs in this class based on these characteristics.

1 Introduction

The problem posed in this thesis belongs to the mathematical branch enumerative combinatorics, whose
typical task is to find the number of objects with a given set of properties. [1] ”Many combinatorial objects
of interest have a rich and interesting algebraic or geometric structure, which often becomes a very powerful
tool toward their enumeration.” 1 In our context, the objects are the labelled edge-3-coloured cliques, the
property is without rainbow triangles, and the characteristics of our graphs lead us toward their enumeration.

Definition 1 A clique is a complete simple undirected graph, i.e., a graph of the form (V,
(
V
2

)
).

Definition 2 An edge-k-colouring of a graph G = (V,E) is a map χ : E →
{
1, ..., k

}
.

Definition 3 A rainbow triangle of a graph with an edge-3-colouring χ is a set {a, b, c} of three vertices,
such that χ({a, b}), χ({b, c}), and χ({a, c}) are pairwise distinct.

In order to clarify as well as simplify the presentation of the studied objects, througout this thesis, we
use G = (V,E) to denote a labelled clique with edge-3-coloring without rainbow triangles, where χ :
E → {RED, GREEN, BLUE}. And we also present G as the disjoint union of three subgraphs: GA =
(V,A) := (V, χ−1(RED)), GB = (V,B) := (V, χ−1(GREEN)), GC = (V,C) := (V, χ−1(BLUE)), namely,
G = GA ∪̇GB ∪̇GC := (V,A ∪̇B ∪̇C), where E = A ∪̇B ∪̇C.

Below are two examples of G with 5 vertices. On the left, GA is connected, while GB and GC are not.
On the right, GA and GB are connected, while GC is not.
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1Bóna, Miklós. Handbook of Enumerative Combinatorics. CRC Press, 2015.
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In Section 2.1, we will examine the connectivities of the subgraphs GA, GB , GC and conclude that, when
|V | ≥ 2, not all three graphs are connected and not all three graphs are disconnected. This allows us to
immediately narrow G with |V | ≥ 2 down to two scenarios: exactly one subgraph is disconnected; exactly
two subgraphs are disconnected.

In Section 2.2, we will focus on the scenario where exactly two subgraphs, say GA, GB , are disconnected, and
conclude that GA ∪̇GB is also disconnected, and explore the relations among the vertex sets of connected
components of GA, GB , GA ∪̇GB .

In Section 3, we will develop the recursive formulas for the number of G upon the connected components of
the one disconnected subgraph, when only one subgraphs is disconnected, or upon the connected components
of the union of the two disconnected subgraphs, when two subgraphs are disconnected.

2 Characteristics of G

Although we define G as labelled, all the characteristics concluded in this section also apply to non-labelled
edge-3-coloured cliques without rainbow triangles.

2.1 Connectivities of the subgraphs GA, GB, GC

Before we start to examine the connectivities of the subgraphs, one heuristic lemma is needed.

Lemma 1. Between any two distinct connected components of a disconnected subgraph, all the edges are
unicolour.

Proof. Without loss of generality, we prove the lemma by proving: if GA = (V,A) is not connected, then
between any two distinct connected components of GA, either all edges are in B, or all of them are in C.
Let J := {j1, ..., jm |m ≥ 1} ⊆ V,K := {k1, ..., kn |n ≥ 1} ⊆ V be the vertex sets of two arbitrary distinct
connected components of GA. There’re three possibilities of the numbers of vertices m and n:

1. m = n = 1. There is only one edge drawn between J and K, which is either green or blue;

2. m = 1, i.e., J = {j1} and n ≥ 2. Let’s first denote the set of red-neighbours of a vertex k ∈ K as
Nk := {ki | {k, ki} ∈ A} ⊆ K. If {j1, k1} ∈ B, then for ∀ki ∈ Nk1

, {j1, ki} ∈ B. Suppose ∃kl ∈ Nk1
, s.t.

{j1, kl} ∈ C, then {j1, k1, kl} is a rainbow triangle. Furthermore, {{j1, ks} | ks ∈ Nki , ki ∈ Nk1} ⊆ B
for the same reason. Since K is red connected, we can iteratively include all the vertices in K because
the iteration corresponds exactly to the breadth search of vertices in (K,

(
K
2

)
∩ A), and we conclude

that {{j1, ki} | ki ∈ K} ⊆ B;

3. m,n ≥ 2. Suppose ∃ jp, jq ∈ J,∃ ks, kt ∈ K, s.t. {jp, ks} ∈ B, {jq, kt} ∈ C. When jp = jq, or
ks = kt, the second point above applies. When jp ̸= jq and ks ̸= kt, since J is red-connected, K

is red-connected, we can find a path (jp, jp1
, ..., jpg

, jq) in (J,
(
J
2

)
∩ A), and a path (ks, ks1 , ...ksh , kt)

in (K,
(
K
2

)
∩ A). {jp, ks} ∈ B ⇒ {jp, ks1} ∈ B ⇒ · · · ⇒ {jp, ksh} ∈ B ⇒ {jp, kt} ∈ B. Similarly,

{jq, kt} ∈ C ⇒ {jpg
, kt} ∈ C ⇒ · · · ⇒ {jp1

, kt} ∈ C. And we end up with a rainbow triangle
{jp, kt, jp1

, }, as the figure below shows.
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Now we can prove the lemmas about the connectivities of the subgraphs based on Lemma 1.

Lemma 2. Not all three graphs GA, GB , GC are connected, except when |V | = 1.

Proof. When |V | = 0, all three graphs are disconnected since a graph without vertices is not connected.
When |V | = 1, all three graphs are connected since a graph with just one vertex is always connected. When
|V | = n ≥ 2, we use induction to prove that not all three graphs are connected.

• (Base case) n = 2: |E| = 1, only one of the graph is connected;

• (Induction hypothesis) For a edge-3-coloured clique G = (V,E) without rainbow triangle and |V | =
n, V = {v1, ..., vn}, we assume w.l.o.g, that GA is disconnected and has k distinct connected compo-
nents with vertex sets U1, ..., Uk, where 2 ≤ k ≤ n, and GB , GC being either connected or disconnected;

• (Induction step) We add a new vertex vn+1 and n new edges {v1, vn + 1}, ..., {vn, vn+1} to G, forming
a clique Ĝ with n+ 1 vertices. Now we prove that it is impossible, that the colouring of these n new
edges will make Ĝ red-connected, green-connected and blue-connected. Let’s assume otherwise, then
for the n edges coming out of vn+1, there must be at least k red edges connecting u1 ∈ U1,...,uk ∈ Uk,
and 1 green edge connecting x ∈ V , 1 blue edge connecting y ∈ V , so it’s necessary that n ≥ k+1+1,
which implies k ≤ n − 2. For k ≤ n − 2, either ∃Ui, Uj ∈ {U1, ..., Uk}, s.t. i ̸= j, |Ui| ≥ 2, |Uj | ≥ 2 or
∃Um ∈ {U1, ..., Uk}, s.t. |Um| ≥ 3. Therefor there exists two possible scenarios considering the relation
between x and y:

1. x ∈ Ui, y ∈ Uj with i ̸= j, |Ui| ≥ 2, |Uj | ≥ 2
If {x, y} ∈ B, then after Lemma 1, {ui, y} ∈ B, then {vn+1, ui, y} is a rainbow triangle, as
indicated by the figure below. Similarly, if {x, y} ∈ C, then {x, uj} ∈ C, and {vn+1, x, uj} is a
rainbow triangle.

x

ui

y

uj

vn+1

Ui Uj
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2. x, y ∈ Ui with |Ui| ≥ 3
Since k ≥ 2, ∃Uj ̸= Ui. If {x, uj} ∈ B, then {y, uj} ∈ B, and {vn+1, y, uj} is a rainbow triangle,
like the figure below shows. If {x, uj} ∈ C, {vn+1, x, uj} is a rainbow triangle.

x

y

ui

uj

vn+1

Ui Uj

Thus, it’s impossible to colour the n new edges, s.t. Ĝ is connected with all three colours if G has at least
one disconnected subgraph, completing our induction step.

Lemma 3. Not all three graphs GA, GB , GC are disconnected, except when |V | = 0.

Proof. When |V | = 0, all three graphs are disconnected. When |V | = 1, all three graphs are connected. When
|V | > 1, from Lemma 2 we conclude that not all three graphs are connected. Suppose w.l.o.g that (V,A)
is disconnected with k distinct connected components with vertex sets U1, ..., Uk, 2 ≤ k ≤ |V |. Because of
Lemma 1, for arbitrary two components Ui ̸= Uj , {{ui, uj} |ui ∈ Ui, uj ∈ Uj} ⊆ (B ∨̇C). And this allows us
to define a clique H := (U,F ), whose vertices are the vertex sets of the connected components of (V,A), i.e.,
U := {U1, ..., Uk}, F :=

(
U
2

)
, and a edge-2-colouring Ω : F → {GREEN, BLUE }, Ω({Ui, Uj}) := χ({x, y})

for any x ∈ Ui, y ∈ Uj , ∀ i ̸= j, and this is well defined. Further, let Hb := (U,Fb := Ω−1(GREEN)), Hc :=
(U,Fc := Ω−1(BLUE)), then F = Fb ∪̇Fc, H = Hb ∪̇Hc. And the equivalences follow:

GB = (V,B) is connected ⇔ Hb = (U,Fb) is connected (3.1)
GC = (V,C) is connected ⇔ Hc = (U,Fc) is connected (3.2)

We prove (3.1), and (3.2) follows analogously.
(⇒) For arbitrary Ui, Uj ∈ U , we can find x, y ∈ V , s.t. x ∈ Ui, y ∈ Uj . Since GB is connected, there exists
a path γ := (x, ..., y) in GB . Then we can construct a walk from Ui to Uj by adding all the Ul ∈ U , which
γ visits sequentially (with possible stops, when two adjacent vertices in γ belong to the same connected
component). And this walk lies in Hb because of the definition of Ω and Hb, and the existence of such walk
in Hb proves that Hb is connected.
(⇐) For arbitrary x, y ∈ GB : when x, y lie in the same Ui ∈ U , there exists Uj ̸=i ∈ U , s.t. Ω({Ui, Uj}) =
GREEN, since Hb is connected. Then for ∀w ∈ Uj , (x,w, y) is a path in GB ; when x ∈ Ui, y ∈ Uj with i ̸= j,
there exists a path (Ui, Ui1 , Ui2 , ..., Uj) in Hb, then for any xi1 ∈ Ui1 , any xi2 ∈ Ui2 , ..., (x, xi1 , xi2 , ..., y) is a
path in GB , so GB is connected.

Having these equivalences, if we can prove that for any edge-2-colouring of H = (U,F ) where |U | ≥ 2,
at least Hb or Hc is connected, then it follows that at least GB or GC is connected. This can be done by
induction:

1. When k = 2, either Hb or Hc is connected since there’s only one edge.
2. Suppose Hb is connected for k vertices. We add a new vertex and k new edges to form a clique Ĥ with

k+ 1 vertices. When at least one of the new edges is coloured green, then Ĥ is green connected because Hb
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is connected. When all the edges are coloured blue, then Ĥ is blue connected via the new (k + 1)th vertex.
Thus either Hb or Hc is connected.

2.2 When two subgraphs are disconnected

In this section, we first examine the relation between vertex sets of connected components of two disconnected
subgraphs, then conclude the disconnectivity of the union of two disconnected subgraphs, and at last examine
the relations between vertex sets of connected components of the disconnected subgraphs and their union.

Lemma 4. Suppose GA, GB are disconnected. Let x ∈ V , let J be the vertex set of connected component of x
in GA, and K the vertex set of connected component of x in GB. Then J ⊆ K or K ⊆ J . Consequently, either
J = K, or J is the disjunct union of vertex sets of more than one connected components of GB including
K, or K is the disjunct union of vertex sets of more than one connceted components of GA including J .

Proof. Suppose J ̸⊆ K and K ̸⊆ J , then ∃ j ∈ J , s.t. j ̸∈ K, and ∃ k ∈ K, s.t. k ̸∈ J . And x ∈ J ∩K, so
x ̸= j, x ̸= k. Since x, j ∈ J , there exists a path γ = (x, x1, ..., xm, j) in GA. Let y ∈ {x1, ..., xm, j} be the
vertex nearest to x in γ, s.t. y ̸∈ K (when m = 0, y = j), then y lies in another connected component of GB ,
let K̂ be the vertex set of that connected component. Because the vertex before y in γ, say z (when m = 0,
z = x), lies in K and {z, y} ∈ A, after Lemma 1, {{k1, k2} | k1 ∈ K, k2 ∈ K̂} ⊆ A. Since k ∈ K, y ∈ K̂, so
{k, y} ∈ A. But y ∈ J at the same time, so k ∈ J , which contradicts our assumption. So J ⊆ K, or K ⊆ J .
Consequently, either

1. J = K; or
2. J ⊊ K, then for an arbitrary ĵ ∈ K\J : ĵ ∈ Ĵ ̸= J , where Ĵ is the vertex set of another component

of GA. Then Ĵ ⊆ K. Because if K ⊆ Ĵ , then J ⊆ Ĵ , which contradicts to the disjunction of the vertex sets
of the connected components of GA. So K is the disjoint union of vertex sets of more than one connected
components of GA including J , or

3. K ⊊ J , then J is the disjoint union of vertex sets of more than one connected components of GB

including K.

Lemma 5. If GA = (V,A), GB = (V,B) are disconnected, then GA ∪̇GB = (V,A ∪̇B) is disconnected.

Proof. Let J, J ′ be the vertex set of any two distinct connected components of GA, where J ∩ J ′ = ∅. Then
for J, J ′ to be connected in GA ∪̇GB , they must be the subset of the vertex set of the same connected
component, say M of GB , i.e., J ⊆ M,J ′ ⊆ M (Lemma 4). But since GB is also disconnected, there exists
at least another connected component of GB , whose vertex set is, say M ′, where M ′ ∩M = ∅, which implies
M ′∩J = M ′∩J ′ = ∅. Then J and M ′ are disconnected in GA as well as in GB , hence as well as in GA ∪̇GB .
So GA ∪̇GB is disconnected.

Lemma 6. Suppose GA, GB are disconnected, then GA ∪̇GB is disconnected. Let J1, ..., Jm; K1, ...,Kl be
the vertex sets of the distinct connected components of GA;GB respectively, then there are three possibilities
of the vertex sets Z1, ..., Zr of the connected components of GA ∪̇GB:

1. Zt = Js = Ki ;
2. Zt = Js is the disjoint union of more than one connected components of GB;
3. Zt = Ki is the disjoint union of more than one connected components of GA.

Proof. Lemma 4 + Lemma 5.
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3 Recursive formula for the number of G

We define

• D1 := scenario, where exactly one of the three subgraphs is disconnected;

• D2 := scenario, where exactly two of the three subgraphs are disconnected;

• p(n, k) := number of ways to partition n labelled vertices into k connected components;

• f(n) := number of G with n vertices;

• fX(n){X∈{A,B,C}} := number of G with n vertices, where only the subgraph GX is connected;

• fXY (n){X ̸=Y ∈{A,B,C}} := number of G with n vertices, where only the subgraphs GX , GY are con-
nected;

• uX(nl){X∈{A,B,C}} := number of ways to form a nl-vertices connected component of the disconnected
subgraph GX in D1;

• uXY (nl){X ̸=Y ∈{A,B,C}} := number of ways to form a nl-vertices connected component of GX ∪̇GY in
D2, where GX , GY are disconnected.

Because of symmetry, uA(nl) = uB(nl) = uC(nl), uAB(nl) = uAC(nl) = uBC(nl), fA(n) = fB(n) = fC(n),
fAB(n) = fAC(n) = fBC(n). So we have:

f(n) = 3fA(n) + 3fAB(n) n ≥ 2 (1)

In order to develop the recursive formula for f(n), we partition the n ≥ 2 labelled vertices into k ≥ 2
connected components, assume each connected component is also an edge-3-colored clique without rainbow
triangle, and connect the components in ways s.t. no rainbow triangle will arise. Consequently we need to

1. count p(n, k) where n ≥ 2, k ≥ 2;

2. count number of ways to connect k ≥ 2 connected components in D1, D2 respectively;

3. count uA(nl), nl ≥ 2 in D1, uAB(nl), nl ≥ 2 in D2 respectively;

4. fit the base case uA(1), uAB(1), fA(1), fAB(1), f(1) into the formula.

3.1 Formula for p(n, k) where n ≥ 2, k ≥ 2

Calculating p(n, k) involves both labelled and unlabelled enumerations. To form two connected components
for a vertex set {1, 2, 3, 4}, while {1, 2}, {3, 4} and {1, 3}, {2, 4} are two different ways, {1, 2}, {3, 4} and
{3, 4}, {1, 2} are the same way, i.e., the connected components are not labelled while the vertices are. We
will first introduce the equations directly and do some explanations afterwards.

p(n, k) =
∑

n1+···+nk=n

1≤n1≤···≤nk<n

(
n

n1,...,nk

)∏
i

ni1= ···=nij

j!
=

∑
n1+···+nk=n

1≤n1≤···≤nk<n

n!

n1! · · · · · nk!

1∏
i

ni1= ···=nij

j!

=
∑

α1m1+···+αlml=n
1≤m1<m2<···<ml<n

α1,...,αl≥1
α1+···+αl=k

n!
l∏

i=1

(mi!)
αiαi!

=
∑

α1m1+···+αlml=n
1≤m1<m2<···<ml<n

α1,...,αl≥1
α1+···+αl=k

k!
l∏

i=1

αi!

· n!

k!

l∏
i=1

(mi!)
αi

=
∑

α1m1+···+αlml=n
1≤m1<m2<···<ml<n

α1,...,αl≥1
α1+···+αl=k

(
k

α1, ..., αl

)
n!

k!

l∏
i=1

(mi!)
αi

=
∑

n1+···+nk=n

1≤n1,...,nk<n

(
n

n1,...,nk

)
k!

(2)
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There are seven expressions in eq(2):

• in the second expression, each connected component is assigned a number ni to denote the number
of vertices in that component. Since the connected components are not labelled, we arrange them
regarding ni in an (not strictly) ascending order. In this way, no permutation occurs among connected
components with different number of vertices. However, the connected components with same number
of vertices do permute in the numerator because the ascending ordering of ni is not strict, so the
number of permutations among them must be included in the denominator;

• in the fourth expression, we group the connected components with same number of vertices. So
connected components in the same group permute while among the different groups there is no per-
mutation. And we adjust the expression accordingly;

• the sixth and seventh expressions equate because
(

k
α1,...,αl

)
is exactly the number of ways to permutate

among n1, ..., nk in the seventh expression for a given α := (α1, ..., αl) and n := (n1, ..., nl) in the
sixth expression. After multiplying this number of permutations in the sixth expression, the sum in
the seventh expression should include all the possible values of n1, ..., nk as long as 1 ≤ ni < n with
n1 + · · ·+ nk = n;

• it is more suitable to develop a recursive algorithm after the fourth expression because it has less
permutations hence is more efficient. However, the seventh expression paves the way of developing
generating function from the recursive formula. We will shortly discuss about generating function in
Section 3.6.

3.2 Number of ways to connect k ≥ 2 connected components in D1, D2

3.2.1 In D1

Let w.l.o.g GB , GC be connected, GA disconnected. Then we can again define a labelled edge-2-coloured
clique H = Hb ∪̇Hc exactly like in the proof of Lemma 3. Let’s emphasize again, for any given G, H
is uniquely defined, and conversely, a given H defines a unique way to connect the distinct connected
components of GA. So the number of ways to connect the components of GA equals the number of edge-2-
colouring of H. Since we require that both GB , GC are connected, with equivalence (3.1), (3.2), we conclude
that the number of ways to connect the components of GA s.t. GB , GC are connected equals the number of
edge-2-colouring of H, s.t. Hb and Hc are connected, and this number can be deducted from the number of
connected k-vertices-graphs dk.
Let hb(k), hc(k), gk denote the number of k-vertices-H, where only Hb, only Hc, both Hb, Hc are connected

respectively. Because of symmetry, hb(k) = hc(k). Then 2hb(k) + gk = 2(
k
2), and dk = hb(k) + gk. So

gk = 2dk − 2(
k
2) (3)

Furthermore, dk satisfies the following recurrence[2]:

k2(
k
2) =

∑
m

(
k

m

)
mdm2(

k−m
2 ) (k ≥ 1) (4)

So there is also gk = 2dk − 2(
k
2) ways to connect the k ≥ 2 connected components of GA s.t. GB , GC are

connected, where dk satisfies eq(4).

3.2.2 In D2

Let w.l.o.g GA, GB be disconnected, and GC connected. We need to count the number of ways to connect
the k connected komponents of GA ∪̇GB . Because of Lemma 6, there can be only blue edges between the
connected components, so there is only one way to connect the k connected komponents of GA ∪̇GB .
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3.2.3 No rainbow triangle arises

In both cases, the counted ways of connecting will not produce any rainbow triangle. First, by the assumption
of recursion, the connected components are without rainbow triangles. Second, for any three vertices not in
the same connected component: if they are in two different components, among the three edges they form,
there are two lying between the connected components, and we obey Lemma 1 when we connect, which
ensures us that these two edges are the same colour, so maximal two colours appear in the three edges; if
the vertices are in three different components, since we connect different components with either two colours
for D1, or with one colour for D2, so no rainbow triangle will arise.

3.3 uA(nl) in D1 and uAB(nl) in D2 where nl ≥ 2

3.3.1 uA(nl) in D1 where nl ≥ 2

We assume GA is disconnected. For GU := (U,
(
U
2

)
) ⊆ G, where U is the vertex set of any connected

component of GA with |U | = nl ≥ 2, exactly one of the three situations appears:

1. GU ∩GA connected, while GU ∩GB , GU ∩GC disconnected, and the number of such GU =̂ fA(nl);

2. GU ∩GA, GU ∩GB connected, GU ∩GC disconnected, and the number of such GU =̂ fAB(nl);

3. GU∩GA, GU∩GC connected, GU∩GB disconnected, and the number of such GU =̂ fAC(nl) = fAB(nl).

Consequently,
uA(nl) = fA(nl) + 2fAB(nl) = uC(nl) nl ≥ 2 (5)

3.3.2 uAB(nl) in D2 where nl ≥ 2

Since uAB(nl) = uBC(nl), we assume GB , GC are disconnected. For GU := (U,
(
U
2

)
) ⊆ G, where U is the

vertex set of any connected component of GB ∪̇GC with |U | = nl ≥ 2, exactly one of the three situations
appears:

1. GU ∩GB , GU ∩GC are connected, i.e., the connected component of GB , GC coincide, and the number
of such GU =̂ fBC(nl) = fAB(nl);

2. GU ∩ GB connected, GU ∩ GC disconnected, with GU ∩ GA connected or disconnected, i.e., the con-
nected component of GB include more than one connected components of GC , and the number of such
GU =̂ fB(nl) + fAB(nl) = fA(nl) + fAB(nl);

3. GU∩GC connected, GU∩GB disconnected, with GU∩GA connected or disconnected, i.e., the connected
component of GC include more than one connected components of GB , the number such GU =̂ fC(nl)+
fAC(nl) = fA(nl) + fAB(nl).

Consequently,
uBC(nl) = 2fA(nl) + 3fAB(nl) nl ≥ 2. (6)

3.4 Base case

Since no matter in D1 or in D2, there is only one way to form a one-vertex connected component, so
uA(1) = uAB(1) = 1. In order that eq(5), eq(6) also apply for nl = 1, we need fA(1) + 2fAB(1) =
2fA(1) + 3fAB(1) = 1 ⇔

fA(1) = −1, fAB(1) = 1 (7)

At the meantime, there is only one way to form a one-vertex-G, so

f(1) = 1 (8)
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3.5 Recursive formulas

3.5.1 Version one

The first version of recursive formula we develop is one more suitable for developing computer algorithm.
We combine the fourth expression of eq(2) with eq(6), eq(7):

fA(n) =

n∑
k=2

∑
α1m1+···+αlml=n
1≤m1<m2<···<ml<n

α1,...,αl≥1
α1+···+αl=k

n!

l∏
i=1

(
2fA(mi) + 3fAB(mi)

)αi

(mi!)αiαi!

where n ≥ 2, fA(1) = −1, fAB(1) = 1 (9)

Combining the fourth expression of eq(2) with eq(3), eq(4), eq(5), eq(7), we obtain:

fAB(n) =

n∑
k=2

∑
α1m1+···+αlml=n
1≤m1<m2<···<ml<n

α1,...,αl≥1
α1+···+αl=k

n! · gk ·
l∏

i=1

(
fA(mi) + 2fAB(mi)

)αi

(mi!)αiαi!

where n ≥ 2, fA(1) = −1, fAB(1) = 1, gk = 2dk − 2(
k
2), k2(

k
2) =

∑
m

(
k

m

)
mdm2(

k−m
2 ) (10)

3.5.2 Version two

The second version of recursive formula is more suitable for developing generating functions. We combine
the seventh expression of eq(2) with eq(6), eq(7):

fA(n) =

n∑
k=2

∑
n1+···+nk=n

1≤n1,...,nk<n

(
n

n1,...,nk

)
k!

k∏
l=1

(
2fA(nl) + 3fAB(nl)

)
where n ≥ 2, fA(1) = −1, fAB(1) = 1 (11)

Combining the seventh expression of eq(2) with eq(3), eq(4), eq(5), eq(7), we obtain:

fAB(n) =

n∑
k=2

∑
n1+···+nk=n

1≤n1,...,nk<n

(
n

n1,...,nk

)
k!

· gk ·
k∏

l=1

(
fA(nl) + 2fAB(nl)

)

where n ≥ 2, fA(1) = −1, fAB(1) = 1, gk = 2dk − 2(
k
2), k2(

k
2) =

∑
m

(
k

m

)
mdm2(

k−m
2 ) (12)

3.6 The outcome and beyond

With help of computer program written based on the combination of eq(1), eq(8), eq(9), eq(10), the first
45 numbers of labelled edge-3-colored cliques without rainbow triangles can be computed within a minute,
with f(45) having the magnitude of 10298. After comparing gk with The On-Line Encyclopedia of Integer
Sequences® (OEIS®)[3], we list the first 10 numbers of fA, fAB , f below.
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fA(n) fAB(n) f(n)

n = 1 1
n = 2 1 0 3
n = 3 7 0 21
n = 4 81 12 279
n = 5 1491 552 6129
n = 6 40989 29340 210987
n = 7 1654983 2283000 11813949
n = 8 103734729 300436668 1212514191
n = 9 11566289259 74748918888 258945624441
n = 10 2663874684261 37147677624540 119434656926403

Like mentioned at the end of Section 3.1 and in Section 3.5.2, it is possible to develop generating functions
from eq(11), eq(12). Generating function is a powerful tool in both labelled and unlabelled enumerations in
the sense that it allows us to obtain an explicit formula for the desired number upon solving, so that we can
calculate the number much faster, gain further information concerning the asymptotic growth rate or other
possible analytic characteristics.[4] Although not always solvable[5], generating function can be a promising
attempt.
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