Formulas for A368548

Chai Wah Wu

February 8, 2024

Let $a(n)$ denote the terms of OEIS A368548, the number of palindromic partitions of n.
Theorem 1. $a(n)=x+y$ where

$$
x=\left\{\begin{array}{cl}
0 & , n \text { even } \\
\sum_{d \left\lvert\, \frac{n+1}{2}\right.}\binom{d-2+\frac{n+1}{2 d}}{d-1} & , n \text { odd }
\end{array}\right.
$$

and $y=2 \sum_{d \mid n+1, d \geq 3, d}$ is odd $\left(\frac{d-5}{2}+\frac{n+1}{d}_{\frac{d-3}{2}}\right)$.
Proof. From the generating function in Hemmer and Westrem [1] (Theorem 3.1) to find $a(n)$ we need to solve the equations $2 k l+2 k+2 l+1=n$ and $2 k l+2 k+3 l+2=n$. The first equation reduces to $2(k+1)(l+1)=n+1$ which has no solutions if n is even. If n is odd, $(k+1)(l+1)=\frac{n+1}{2}$ and we set $k+1=d, l+1=\frac{n+1}{2 d}$ for each divisor d of $\frac{n+1}{2}$ and $\binom{k+l}{k}=\binom{d-2+\frac{n+1}{2 d}}{d-1}$. This leads to the term x. The second equation reduces to $(2 k+3)(l+1)=n+1$. Note that $2 k+3$ is odd and we set $2 k+3$ to be an odd divisor $d \geq 3$ of $n+1$. Then $l+1=\frac{n+1}{d}$ and $2\binom{k+l}{k}=2\left(\frac{d-5}{2}+\frac{n+1}{d}_{\frac{d-3}{2}}\right)$.

Corollary 1. If $n>1$ and $n+1$ is prime, then $a(n)=2$.
Proof. Since $n>1, n+1=p$ being prime implies n is even, i.e., $x=0$ in the Theorem above. The only odd divisor ≥ 3 of $n+1$ is p and $y=2\binom{\frac{p-5}{2}+1}{\frac{p-3}{2}}=2\binom{\frac{p-3}{2}}{\frac{p-3}{2}}=2$, i.e., $a(n)=2$.

Corollary 1 also follows from Theorem 3.2 in Hemmer and Westrem [1].
Corollary 2. If $n>3$ is odd and $\frac{n+1}{2}$ is prime, then $a(n)=\frac{n+3}{2}$.
Proof. Since $n>3$, this means that $\frac{n+1}{2}=p$ is an odd prime. For x, the only divisors of $\frac{n+1}{2}$ are 1 and p and $x=2\binom{p-2+1}{p-1}=2$. Similarly, the only odd divisor ≥ 3 of $n+1$ is p and $y=2\binom{\frac{p-5}{2}+2}{\frac{p-3}{2}}=2\binom{\frac{p-1}{2}}{1}=p-1$. Thus $a(n)=x+y=p+1=\frac{n+3}{2}$.
Corollary 3. $a\left(2^{n}-1\right)=\sum_{i=0}^{n-1}\binom{2^{i}+2^{n-i-1}-2}{2^{i}-1}$.
Proof. Since 2^{n} is either even or <3, this implies that $y=0$. The result then follows since the divisors of 2^{n-1} are 2^{i}, for $i=0,1, \cdots, n-1$.

A similar derivation shows that $R(n)$ in Table 4.2 in Hemmer and Westrem [1] has a similar formula.
Theorem 2. Let $T(n, k)$ be the table in OEIS A183917. Then $R(n)=x+y$ where

$$
x=\left\{\begin{array}{cl}
0 & , n \text { even } \\
\sum_{d \left\lvert\, \frac{n+1}{2}\right.} T\left(2(d-1), \frac{n+1}{2 d}-1\right) & , n \text { odd }
\end{array}\right.
$$

and $y=2 \sum_{d \mid n+1, d \geq 3, d}$ is odd $T\left(\frac{d-1}{2}, \frac{n+1}{d}-1\right)$.

Corollary 4. If $n>1$ and $n+1$ is prime, then $R(n)=2$.
Proof. The same argument as Corollary 1 shows that $R(n)=y=2 T\left(\frac{p-1}{2}, 0\right)=2$.
Corollary 5. If $n>3$ is odd and $\frac{n+1}{2}$ is prime, then $R(n)=\frac{n+3}{2}$.
Proof. $x=2 T(2(p-1), 0)=2 . y=2 T\left(\frac{p-1}{2}, 1\right)=2 \frac{p-1}{2}=p-1$. Thus $a(n)=p+1=\frac{n+3}{2}$.
Corollary 6. $R\left(2^{n}-1\right)=\sum_{i=0}^{n-1} T\left(2\left(2^{i}-1\right), 2^{n-i-1}-1\right)$.

References

[1] David J. Hemmer and Karlee J. Westrem, "Palindrome Partitions and the Calkin-Wilf Tree" arXiv:2402.02250, 2024.

