
15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 1/14

Diagonals in elementary cellular automaton 30
by Michael Brunnbauer (/), 2019-12-09

Abstract
The usual pattern starting from a single cell with state 1 / black is examined. It is contructed from a richer structure which
yields a progression of polynomials for diagonals from the right. It is shown that each diagonal from the left can be
expressed by the progression of polynomials for diagonals from the right and how the connection between left and right
diagonals forces the diagonals from the left to eventually become periodic.

The necessary and sufficient condition for period doubling of diagonals from the right is established. It is also shown that
periods cannot decrease. The result suggests that predicting period doubling is computationally expensive.

I am a math amateur and not familiar with the status quo of research regarding cellular automaton 30 so there is probably
nothing genuinely new here. This is a fun exercise in the first place.

Introduction
An elementary cellular automaton is a one-dimensional cellular automaton with two possible states and a rule to
determine the state of a cell in the next generation - which depends on the state of the cell and its two neighbors.

A cell with its two neighbors can have 23 possible states and the rule for the automaton has to specify the resulting state

of the cell for each of them. This yields 2(23) possible rules which are usually named by a number called the Wolfram
code. This scheme was proposed by Stephen Wolfram. Here is Rule 30:

111 110 101 100 011 010 001 000 Current pattern
0 0 0 1 1 1 1 0 New state for middle cell

If the possible states of the cell and its two neighbors are ordered this way, the Wolfram code for the automaton is simply
the new states read as binary number.

It is easy to see that the rule can be expressed as left cell XOR (middle cell OR right cell).

If started from one black cell (state 1), the first few iterations look like this:

And here are the first 300 iterations:

https://brunni.de/

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 2/14

Diagonals from the right
The diagonals on the right side of rule 30 started from a single black cell are periodic and double their period at irregular
intervals. The sequence of periods is A094605 (http://oeis.org/A094605) on OEIS and begins with

1, 2, 2, 4, 8, 8, 16, 32, 32, 64, 64, 64, 64, 64, 64, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 1024, 1024, 2048,
2048, 4096, ...

The n th cell of the m th diagonal on the right side can be recursively defined with the function R(m, n) as follows:

R(m, 0) = 0

R(0, n) = 0

R(1, n) = 1

R(m, n) = {

where R(m, n − 1)+ . . . accounts for the XOR with the right cell and

R(m − 1, n) + R(m − 2, n) + R(m − 1, n) ⋅ R(m − 2, n) accounts for the OR of the middle and right cell. It can be
seen that the m th diagonal is computed from diagonal m − 1 and m − 2.

The n th cell of the m th diagonal on the right side in the cellular automaton is then R(m, n) mod 2.

This construction is similar to Pascal's triangle, where the value of a cell mod 2 is the corresponding cell in elementary
cellular automaton 60.

The recursion over n can be replaced with a sum, so for right side diagonals, I adopt the notation Rm (n) instead of

R(m, n).

R(m, n − 1) + R(m − 1, n) + R(m − 2, n) + R(m − 1, n) ⋅ R(m − 2, n) for even m > 1
R(m, n − 1) + R(m − 1, n − 1) + R(m − 2, n) + R(m − 1, n − 1) ⋅ R(m − 2, n) for odd m > 1

http://oeis.org/A094605

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 3/14

Rm (n) =

Let's look at the first few diagonals:

R2(n) =
n

∑
i= 1

R1(i) + R0(i) + R1(i) ⋅ R0(i) =
n

∑
i= 1

1 = n

R3(n) =
n

∑
i= 1

R2(i − 1) + R1(i) + R2(i − 1) ⋅ R1(i) =
n

∑
i= 1

i − 1 + i

=
n2

2
+

n
2

− n +
n2

2
+

n
2

= n2

R4(n) =
n

∑
i= 1

R3(i) + R2(i) + R3(i) ⋅ R2(i) =
n

∑
i= 1

i2 + i + i3

=
n3

3
+

n2

2
+

n
6

+
n2

2
+

n
2

+
n4

4
+

n3

2
+

n2

4
=

3n4 + 10n3 + 15n2 + 8n
12

Using Faulhaber's formula, every
n

∑
i= 1

ix can be converted into a (x + 1)th degree polynomial of n . As the only

operations involved are addition, multiplication and summation over polynomials, every Rm (n) is a polynomial of n .

Looking at the situation modulo 2 only seems to delay the increasing complexity of the polynomials:

R2(n) = n (mod 2)

R3(n) = n2 = n (mod 2)

R4(n) =
n

∑
i= 1

i + i + i2 =
n

∑
i= 1

i + i + i =
n

∑
i= 1

i =
n ⋅ (n + 1)

2
=

n2 + n
2

(mod 2)

R5(n) =
n

∑
i= 1

(i − 1) ⋅ i
2

+ i +
(i − 1) ⋅ i2

2
=

n

∑
i= 1

i2

2
−

i
2

+ i +
i3

2
−

i2

2
=

n

∑
i= 1

i3

2
+

i
2

(mod 2)

=
1
2
⋅ (

n4

4
+

n3

2
+

n2

4
) +

1
2
⋅ (

n2

2
+

n
2

) =
n4 + 2n3 + 3n2 + 2n

8
(mod 2)

Diagonals from the left
For diagonals from the left, R(m, n − 1) and R(m − 2, n) from the definition of R(m, n) switch their roles. The new
function will be called L, so all R are also replaced with L.

L(m, 0) = 0

L(0, n) = 0

⎧⎪⎨⎪⎩ n

∑
i= 1

Rm− 1(i) + Rm− 2(i) + Rm− 1(i) ⋅ Rm− 2(i) for even m > 1

n

∑
i= 1

Rm− 1(i − 1) + Rm− 2(i) + Rm− 1(i − 1) ⋅ Rm− 2(i) for odd m > 1

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 4/14

L(1, n) = 1

L(m, n) = {

This is the same definition as for diagonals from the right, but with multiplication by L(m, n − 1) instead of L(m − 2, n)
at the end. Because L(m, n − 1) is now used twice in the definition, the recursion over n cannot be easily removed (the

same applies to the recursion over m). It seems that L(m, n) grows exponential with n.

The development of the periods of L(m, n) mod 2 with fixed m also is more complex. Periods don't always start at

L(m, 1), they double more slowly and can also decrease. Here are the periods and starting points of the first few
diagonals:

Periods: 1, 1, 1, 2, 1, 2, 2, 1, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 1, 8, 1, ...

Period start: 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 3, 4, 5, 8, 6, 11, 8, 13, 12, 14, 12, 15, 15, 16, 16, 17, 15, 18, ...

Intersections
By construction, R and L must be equal where the diagonals intersect:

L(m, n) = {

(m > 0, n > 0)

This can also be proven by induction (See appendix 1). The intersection in the central column is just a special case of this
rule:

L(m, ⌈
m
2
⌉) = R(m, ⌈

m
2
⌉)

It is intriguing that one diagonal from the left can be expressed by the growing degree and complexity of the polynomials
for the diagonals from the right. One may also ask how those progressions of polynomials eventually become periodic
when taken modulo 2. But it can easily be seen that their eventual periodicity is necessary:

To calculate left diagonals modulo 2, right diagonals only have to be computed up to size m
2

 or m+ 1
2

. If only the values

modulo 2 are of interest, this is a closed system of fixed size: Two partial diagonals to calculate the next partial diagonal of
same size. This system eventually has to become periodic.

Periodicity of diagonals from the right
For the analysis of periodicity modulo 2, I am changing back to the simpler picture and redefine Rm (n) with addition

modulo 2 (XOR) and A + B + A ⋅ B replaced by the logical OR A ∨ B . I call the resulting function R ′
m (n).

Rm (n) mod 2 = R ′
m (n) =

L(m − 2, n) + L(m − 1, n) + L(m, n − 1) + L(m − 1, n) ⋅ L(m, n − 1) for even m > 1
L(m − 2, n) + L(m − 1, n − 1) + L(m, n − 1) + L(m − 1, n − 1) ⋅ L(m, n − 1) for odd m > 1

R(2n, m
2

) for even m

R(2n − 1, m+ 1
2

) for odd m

⎧⎪⎨⎪⎩ n

∑
i= 1

R ′
m− 1(i) ∨ R ′

m− 2(i) for even m > 1

n

∑
i= 1

R ′
m− 1(i − 1) ∨ R ′

m− 2(i) for odd m > 1

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 5/14

In words: To get R ′
m (n) for even m > 1, do a summation (modulo 2) over the logical OR of the two preceding diagonals

up to cell n . For odd m > 1, shift the last diagonal by one before doing the OR.

If R ′
m− 1 ∨ R ′

m− 2 is periodic with basic period p, the summation can cause a period doubling:

Behaviour of periods under summation modulo 2

Let f (x) with range {0, 1} be periodic with basic period p:

∀x > 0 : f (x + p) = f (x)

∀p1 < p : ∃xf (x + p1) ≠ f (x)

Then if n
p = a with remainder b:

n

∑
i= 1

f (i) = f (1)+ . . . + f (p) + f (1 + p)+ . . . + f (n)

= a mod 2 ⋅
p

∑
i= 1

f (i) +
b

∑
i= 1

f (i)

It can be seen that the second term (the sum up to b) is periodic with period p. If the sum of f (x) up to p is 1, the first

term amounts to addition of 1 while a is odd and 0 while a is even. If the sum of f (x) up to p is 0, the second term stays
unchanged.

So the necessary and sufficient condition for period doubling of the whole sum is that the sum up to p is 1 and this causes
the new basic period to be the sequence generated by the second term concatenated with the inverse of itself.

∃n : p = 2n

g(x) =
x

∑
i= 1

f (i)

Case 1

p

∑
i= 1

f (i) = 1

It follows:

∀x > 0 : g(x + 2p) = g(x)

∀x > 0 : g(x + p) ≠ g(x)

2p is also the basic period of g(x):

∀p1 < 2p : ∃xg(x + p1) ≠ g(x)

Proof by contradiction:

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 6/14

∃p1 < 2p : ∀xg(x + p1) = g(x)

Let p1 divide 2p. Then p1 is a power of 2. As p is not a period of g(x), p1 cannot be p - so it must also divide p. But then p
would again be a period of g(x) - which is impossible. But if p1 does not divide 2p, g(x) would have two periods that are

not multiples of each other - which is also impossible. So 2p must be the basic period of g(x).

Case 2

p

∑
i= 1

f (i) = 0

It follows:

∀x > 0 : g(x + p) = g(x)

g(p) = 0

The last statement means that each period p ends with 0. If where was another period p1 smaller than p, it would imply

that p is a multiple of p1 and that period p1 also has to end with 0 - so the summation at p1 + 1 starts fresh and yields p1

again. This forces f (x) to be periodic with period p1 < p, which is a contradiction - so the basic period of g(x) must be p
again.

Summary

It is established that g(x) will have twice or the same basic period of f (x) depending on whether the sum of f (x) up to p
modulo 2 is 1.

Overall behaviour of periods

Here are the first few periods of R ′
m (n):

1
10
10
1100
10110100
10101000
1010011101011000
11001010101011110011010101010000
10111010011010101101010101010000
1010110010110101010110011001111101010011010010101010011001100000

The typical concatenation of a sequence with its inverse at every period doubling can be seen. So in accordance with the
last result, we suspect that R ′

m− 1 ∨ R ′
m− 2 (with R ′

m− 1 shifted or not) always has a basic period p that is the maximum of
the basic periods of R ′

m− 1 and R ′
m− 2. This would mean that the summation over R ′

m− 1 ∨ R ′
m− 2 (with R ′

m− 1 shifted or
not) up to p would determine whether there is a period doubling or not.

The proof idea is that every diagonal from the right must terminate with an increasing number of zeros and that the
number of zeros at the end of half its period can never catch up to match it. Thus R ′

m− 1 ∨ R ′
m− 2 (with R ′

m− 1 shifted or
not) always must have a basic period p that is the maximum of the basic periods of R ′

m− 1 and R ′
m− 2.

Growth of zeros at the end

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 7/14

For even m:

R ′
m (n) =

n

∑
i= 1

R ′
m− 1(i) ∨ R ′

m− 2(i)

Let z be the number of zeros at the end of a period (with a one before them). Then this transition table applies regardless
whether period doubling occurs or not:

R ′
m− 2(i) R ′

m− 1(i) R ′
m (n)

z = 0 z = 0 z = 1
z z z + 1
z z + 1 z + 1
For odd m:

R ′
m (n) =

n

∑
i= 1

R ′
m− 1(i − 1) ∨ R ′

m− 2(i)

the transition table looks like this (again regardless whether period doubling occurs or not):

R ′
m− 2(i) R ′

m− 1(i) R ′
m (n)

z = 0 z = 0 z = 1
z z z
z z + 1 z + 1
For even and odd m:

Every start in the whole transition system leads to cyclic behaviour that adds a zero every second step - possibly with an
initiation period of 1-2 steps.

Growth of zeros in the middle

After each period doubling, the number of zeros at the end are matched by the same number of ones at the end of half
the period. But the situation regarding trailing zeros for the partial sum is like for the full sum - except that in the situation
where the full sum would double its period, the partial sum gets all trailing zeros replaced by ones. So the number of zeros
at the end of the partial sum can never catch up before period doubling occurs again - which has to happen eventually.

Outlook
It was established that the period of diagonals from the right doubles if the number of ones (or black cells) in a
combination of the last two diagonals is odd and otherwise stays the same.

This combination is the logical OR of the basic period of the last diagonal (shifted by one for odd diagonals) with the basic
period of the second to last diagonal (doubled if the period has half the size of the last diagonal).

At first glance, the number of ones (or black cells) in that combination does not seem to be reduceable to a generalized
property of the previous two diagonals so the period doubling cannot be predicted without calculating the values in the
periods - but that may well be a premature conclusion. To my current knowledge, this is still an unsolved problem.

Appendix 2 contains a Python program to compute and output the period lengths of diagonals from the right until it runs
out of memory. With a 32bit Python interpreter, it came this far:

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 8/14

1, 2, 2, 4, 8, 8, 16, 32, 32, 64, 64, 64, 64, 64, 64, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 1024, 1024, 2048,
2048, 4096, 4096, 4096, 4096, 4096, 8192, 8192, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144,
262144, 262144, 262144, 262144, 524288, 1048576, 1048576, 2097152, 2097152, 2097152, 4194304, 8388608,
8388608, 8388608, 16777216, 16777216, 33554432, 33554432, 33554432, 67108864, 134217728

Appendix 3 contains a Python program to compute and output the offsets and period lengths of diagonals from the left
from partial diagonals from the right. The memory requirement of this calculation only grows linear with m so it can run
much longer. Here are the first 410 (offset,period) pairs for diagonals from the left:

(0, 1), (0, 1), (1, 1), (0, 2), (0, 1), (0, 2), (0, 2), (0, 1), (0, 4), (0, 1), (1, 4), (2, 4), (0, 4), (3, 4), (4, 4), (5, 4), (8, 4), (6, 4), (11,
4), (8, 4), (13, 4), (12, 4), (14, 4), (12, 2), (15, 4), (15, 4), (16, 4), (16, 4), (17, 1), (15, 8), (18, 1), (18, 8), (20, 8), (19, 8),
(23, 8), (19, 8), (28, 8), (22, 8), (29, 8), (30, 8), (35, 8), (31, 8), (36, 8), (34, 8), (39, 8), (36, 4), (41, 8), (38, 8), (47, 8), (40,
8), (48, 8), (48, 8), (50, 8), (48, 8), (51, 8), (50, 8), (54, 8), (50, 8), (55, 8), (55, 8), (56, 8), (56, 8), (56, 8), (59, 8), (56, 4),
(60, 8), (61, 4), (63, 8), (62, 8), (64, 8), (64, 8), (63, 8), (64, 8), (62, 8), (65, 8), (63, 8), (66, 8), (69, 8), (68, 8), (71, 8), (70,
4), (74, 8), (72, 8), (75, 8), (74, 8), (82, 8), (76, 8), (83, 8), (83, 8), (79, 8), (82, 8), (81, 8), (81, 8), (81, 8), (83, 4), (82, 8),
(82, 8), (82, 8), (83, 8), (83, 8), (84, 8), (86, 8), (84, 8), (89, 8), (86, 8), (94, 8), (92, 8), (97, 8), (95, 8), (98, 8), (99, 8), (99,
8), (100, 8), (101, 8), (101, 8), (104, 8), (100, 8), (105, 8), (104, 8), (106, 8), (106, 8), (104, 2), (105, 8), (104, 8), (105, 8),
(104, 8), (106, 8), (104, 8), (107, 8), (106, 8), (105, 8), (106, 8), (105, 8), (108, 8), (106, 8), (110, 8), (108, 8), (111, 2), (111,
8), (108, 8), (111, 8), (109, 8), (112, 8), (110, 8), (113, 8), (112, 2), (111, 8), (111, 2), (113, 8), (111, 8), (114, 8), (113, 8),
(115, 8), (113, 8), (116, 8), (118, 8), (119, 8), (119, 8), (120, 8), (120, 8), (121, 8), (121, 8), (120, 8), (122, 8), (122, 8), (119,
8), (121, 8), (122, 8), (122, 8), (124, 8), (122, 8), (125, 8), (126, 8), (126, 8), (128, 8), (128, 8), (130, 8), (129, 8), (132, 8),
(129, 8), (138, 8), (132, 8), (139, 4), (140, 8), (140, 8), (142, 8), (140, 8), (148, 8), (143, 8), (149, 8), (151, 8), (150, 8),
(152, 8), (150, 8), (153, 4), (152, 8), (155, 8), (152, 8), (156, 8), (159, 8), (157, 8), (160, 8), (159, 8), (163, 8), (161, 8),
(164, 4), (167, 8), (165, 8), (169, 8), (167, 8), (172, 8), (169, 4), (173, 8), (175, 8), (174, 8), (176, 8), (176, 4), (174, 8),
(175, 8), (174, 8), (175, 8), (174, 8), (170, 8), (174, 8), (175, 8), (175, 8), (176, 8), (176, 8), (177, 8), (176, 8), (174, 8),
(176, 8), (177, 8), (177, 8), (176, 8), (179, 8), (179, 8), (176, 8), (178, 8), (179, 8), (179, 8), (177, 8), (179, 8), (178, 8),
(181, 8), (178, 8), (183, 8), (180, 8), (185, 8), (182, 8), (186, 8), (184, 8), (188, 8), (186, 8), (190, 8), (188, 8), (191, 8),
(193, 8), (194, 8), (194, 8), (193, 8), (195, 8), (196, 8), (200, 8), (196, 8), (203, 8), (204, 8), (205, 8), (207, 8), (207, 8),
(208, 8), (208, 8), (210, 8), (211, 8), (215, 8), (212, 8), (218, 8), (220, 8), (226, 8), (221, 8), (230, 8), (225, 8), (231, 8),
(231, 8), (232, 8), (233, 8), (234, 4), (236, 8), (238, 4), (238, 8), (240, 4), (239, 8), (238, 8), (238, 8), (238, 8), (238, 8),
(238, 8), (237, 8), (238, 8), (238, 8), (239, 8), (239, 8), (240, 8), (238, 8), (242, 8), (240, 8), (243, 8), (242, 8), (241, 8),
(241, 8), (240, 8), (241, 8), (242, 8), (241, 8), (241, 8), (241, 8), (242, 8), (242, 8), (243, 8), (244, 8), (243, 8), (245, 8),
(245, 8), (244, 8), (242, 8), (243, 8), (241, 8), (243, 8), (243, 8), (246, 8), (240, 8), (250, 4), (248, 8), (252, 8), (251, 8),
(253, 8), (253, 8), (254, 8), (253, 8), (258, 8), (257, 8), (259, 8), (260, 8), (260, 8), (260, 8), (259, 8), (259, 8), (256, 8),
(260, 8), (262, 8), (261, 8), (264, 8), (267, 8), (265, 8), (269, 8), (267, 8), (273, 8), (269, 8), (278, 8), (272, 8), (280, 8),
(278, 4), (283, 8), (280, 4), (285, 8), (282, 8), (286, 8), (288, 8), (287, 8), (289, 8), (289, 8), (288, 8), (289, 8), (289, 8),
(292, 8), (290, 8), (293, 8), (292, 8), (292, 4), (291, 8), (291, 8), (292, 8), (294, 8), (295, 8), (295, 8), (297, 8), (295, 8),
(298, 8), (297, 8), (299, 4), (299, 8), (298, 8), (296, 8), (297, 8), (296, 8), (297, 8), (298, 8), (296, 8), (302, 8), (301, 1),
(298, 16), (300, 1), (299, 16), (300, 16), (300, 16), (302, 16), (300, 16), (303, 16), (303, 16), (304, 16)

Appendix
Appendix 1

Proof of:

L(m, n) = {

(m > 0, n > 0)

R(2n, m
2

) for even m

R(2n − 1, m+ 1
2

) for odd m

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 9/14

We start by proving:

L(m, 1) = {

Proof:

R(2,
m
2

) =
m
2

 (see sect ion "Diagonals from the right")

R(1,
m + 1

2
) = 1 (by definit ion)

L(m, 1) = {

L(1, 1) = 1 = R(1, 1) (by definit ion)

Induction step. From:

L(m, n) = {

and:

L(m1, n + 1) = {

we prove:

L(m, n + 1) = {

Proof for even m:

L(m, n + 1)

= L(m − 2, n + 1) + L(m − 1, n + 1) + L(m, n) + L(m − 1, n + 1) ⋅ L(m, n)

= R(2n + 2,
m − 2

2
) + R(2n + 1,

m
2

) + R(2n,
m
2

) + R(2n + 1,
m
2

) ⋅ R(2n,
m
2

)

= R(2n + 2,
m
2

)

Proof for odd m:

L(m, n + 1)

R(2, m
2

) for even m

R(1, m+ 1
2

) for odd m

L(m − 2, 1) + L(m − 1, 0) = 1 = R(1, m+ 1
2

) for odd m > 1

L(m − 2, 1) + L(m − 1, 1) = L(m − 2, 1) + 1 = m
2

= R(2, m
2

) for even m > 1

R(2n, m
2

) if m even

R(2n − 1, m+ 1
2

) if m odd

R(2n + 2, m1
2

) for even m1 < m

R(2n + 1, m1+ 1
2

) for odd m1 < m

R(2n + 2, m
2

) if m even

R(2n + 1, m+ 1
2

) if m odd

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 10/14

= L(m − 2, n + 1) + L(m − 1, n) + L(m, n) + L(m − 1, n) ⋅ L(m, n)

= R(2n + 1,
m − 1

2
) + R(2n,

m − 1
2

) + R(2n − 1,
m + 1

2
) + R(2n,

m − 1
2

) ⋅ R(2n − 1,
m + 1

2
)

= R(2n + 1,
m + 1

2
)

Appendix 2

A Python program to compute and output the period lengths of diagonals from the right until it runs out of memory. If you
do not have the bitarray module, install it with "pip install bitarray".

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 11/14

from bitarray import bitarray

this function does the summation modulo 2 over the already combined previous
two periods. the result is the basic period of the next diagonal.
def newdiagonal(combination):
 l=len(combination)
 s=bitarray('')
 value=0
 for i in range(2*l):
 if i==l and not value:
 # no period doubling, stop
 break
 value=value^combination[i%l]
 s.append(value)
 return s

this function combines the previous two basic periods with OR and then
calculates the basic period of the next diagonal using newdiagonal()
def newperiod(nr,lastperiod,lastlastperiod):
 l1=len(lastperiod)
 l2=len(lastlastperiod)
 assert l2 <= l1
 if l1 > l2:
 assert l1 == l2*2
 # if the second to last period only has half size, repeat it
 lastlastperiod=lastlastperiod*2

 if not nr%2:
 # normal OR for even diagonals
 combination = lastperiod | lastlastperiod
 else:
 # shift previous period before OR for odd diagonals
 combination = (bitarray('0')+lastperiod[:-1]) | lastlastperiod
 return newdiagonal(combination)

diagonal 1
lastperiod=bitarray('1')
diagonal 0
lastlastperiod=bitarray('0')
period of diagonal 1
periods=[1]
next diagonal is 2
nr=2

while True:
 s=newperiod(nr,lastperiod,lastlastperiod)
 p=len(s)
 periods.append(p)
 print(periods)
 lastlastperiod=lastperiod
 lastperiod=s
 nr+=1

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 12/14

Appendix 3

A Python program to compute and output the offsets and period lengths of diagonals from the left. If you do not have the
bitarray module, install it with "pip install bitarray".

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 13/14

from bitarray import bitarray

check whether s is periodic with period p
def isperiodic(s,p):
 l=len(s)
 for pos in range(l):
 pos1=pos+p
 if pos1 >= l:
 break
 if s[pos]!=s[pos1]:
 return False
 return True

find the basic period of s starting with offset t
def findperiod(s,t=0):
 if t > len(s):
 return None,None
 if not s:
 return t,1
 p=1
 while p <= len(s)//2:
 if isperiodic(s,p):
 return t,p
 # we do not assume periods of diagonals on the left are powers of two
 # although they seem to be
 p=p+1
 return findperiod(s[1:],t+1)

compute new diagonal from the right up to fixed length
def newdiagonal(nr,last,lastlast):
 l1=len(last)
 l2=len(lastlast)
 assert l2 == l1

 if not nr%2:
 combination = last | lastlast
 else:
 combination = (bitarray('0')+last[:-1]) | lastlast

 s=bitarray('')
 value=0
 for i in range(l1):
 value=value^combination[i]
 s.append(value)
 return s

offset and period of first diagonal
periods=[(0,1)]
we start with the second diagonal
nr=2
while True:
 # l is the length of the part of the diagonal from the right we need
 if not nr%2:

15/07/23, 20:31 Diagonals in elementary cellular automaton 30

https://brunni.de/findings30/ 14/14

 l=nr//2
 else:
 l=(nr+1)//2
 # this is the diagonal number on the right
 n=1
 # the first diagonal is ones only
 last=bitarray('1'*l)
 # the one before that is zeros only
 lastlast=bitarray('0'*l)
 # here we store the computed values for the left diagonal
 diagonal=bitarray('')
 # we also track the state of the right diagonal system to see when it
 # has become periodic
 states={}
 # we stop when we have that many values for the left diagonal (TBD)
 stopatlen=None

 while True:
 if not nr%2 and not n%2:
 diagonal.append(last[-1])
 if nr%2 and n%2:
 diagonal.append(last[-1])

 # if necessary length has been determined we determine offset+period
 # and are done with this diagonal from the left
 if stopatlen is not None and len(diagonal)==stopatlen:
 t,p=findperiod(diagonal)
 assert t is not None
 periods.append((t,p))
 print(periods)
 print()
 break

 # when states start repeating we know how many values we need at most
 if stopatlen is None:
 k=(tuple(last+lastlast))
 if k in states:
 stopatlen=(len(diagonal)+1)*2
 else:
 states[k]=n

 # calculate next partial diagonal from the right
 n+=1
 s=newdiagonal(n,last,lastlast)
 lastlast=last
 last=s

 nr+=1

