The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361553 Expansion of g.f. A(x) satisfying 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). 5
1, 3, 24, 171, 1335, 11940, 115773, 1160901, 11901537, 124726644, 1332688035, 14455451526, 158660036535, 1758835084221, 19667067522966, 221573079684087, 2512635069594897, 28656903391830291, 328500210705228867, 3782806859877522522, 43738575934977450465 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Quintuple Product Identity.
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
(2) 3*x = Sum_{n=-oo..+oo} x^(n*(3*n-1)/2) * A(x)^(3*n) * (x^n - 1/A(x)).
(3) 3*x = Product_{n>=1} (1 - x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^(2*n-1)*A(x)^2) * (1 - x^(2*n-1)/A(x)^2), by the Watson quintuple product identity.
(4) a(n) = Sum_{k=0..n} A361550(n,k) * 3^k for n >= 0.
a(n) ~ c * d^n / n^(3/2), where d = 12.47776743014414138089586... and c = 0.474320402676760199022... - Vaclav Kotesovec, Mar 29 2023
EXAMPLE
G.f.: A(x) = 1 + 3*x + 24*x^2 + 171*x^3 + 1335*x^4 + 11940*x^5 + 115773*x^6 + 1160901*x^7 + 11901537*x^8 + 124726644*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
3*x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
3*x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
MATHEMATICA
(* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{r^3*s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] * QPochhammer[s^2/r, r^2] / ((-1 + s)*(-1 + r*s)*(-r + s^2)*(-1 + r*s^2)) == k*r, 1/(-1 + s) + 1/(s*(-1 + r*s)) + (2*s)/(-r + s^2) - 2/(s - r*s^3) + (-QPolyGamma[0, -Log[r*s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s^2]/Log[r^2], r^2] + QPolyGamma[0, Log[s^2/r]/Log[r^2], r^2]) / (s*Log[r]) == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)
PROG
(PARI) /* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3*x - sum(m=-#A, #A, x^(m*(3*m-1)/2) * Ser(A)^(3*m-1) * (x^m*Ser(A) - 1) ) , #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3*x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A058038 A089697 A120741 * A356362 A356361 A292293
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 19 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 03:51 EDT 2024. Contains 373110 sequences. (Running on oeis4.)