Computational Characterization of $a(n)=A 038547\left(2^{\wedge} n\right)$

Hartmut F. W. Hoft, 2023-02-07
A list of properties for the prime factorization $\prod_{i=1}^{s} p_{i+1}^{2^{t_{i}}-1}$ of certain numbers with 2^{n} odd divisors:
(1) $3=p_{2}<\ldots<p_{s+1}$ are the first consecutive s odd primes
(2) $f_{1} \geq \ldots \geq f_{s} \geq 1$ and $\sum_{i=1}^{s} f_{i}=n$
(3) $p_{s+1}<p_{i+1}{ }^{2^{f_{i}}}$, for all $1 \leq \mathrm{i}<\mathrm{s}$

Theorem: For every $n \geq 1$, equivalent are
(a) $a(n)$ is the least number with 2^{n} odd divisors; $a(n)=A 038547\left(2^{n}\right)$.
(b) $a(n)=\prod_{i=1}^{s} p_{i+1}{ }^{2^{i}-1}$ satisfies properties (1) - (3) and $a(n-1) \mid a(n)$.

Proof by induction on n :
(a) $\Rightarrow(b)$: Properties (1) - (3) are obviously necessary.

Let $\mathrm{a}(\mathrm{n}-1)=\prod_{i=1}^{r} p_{i+1}^{2^{e_{i}}-1}$ and $\mathrm{a}(\mathrm{n})=\prod_{i=1}^{s} p_{i+1} 2^{2_{i}-1}$ then $\mathrm{b}=\prod_{i=1}^{s-1} p_{i+1}^{2^{f_{i}}-1} \times p_{s+1}^{2^{f_{s}-1}-1}$ has 2^{n-1} odd divisors so that $a(n-1) \leq b<a(n)$.
If $r>s$ and $1 \leq k \leq s$ is the smallest index with $e_{k}<f_{k}$ then $p_{r+1}<p_{k+1}{ }^{2^{e_{k}}} \leq p_{k+1} 2^{t_{k-1}}$ by induction so that $\frac{a(n)}{p_{k+1}^{2^{2} k^{-1}}} \times p_{r+1}<a(n)$ has 2^{n} odd divisors, contradicting minimality of $a(n)$.
If $a(n-1) \times a(n)$ then every prime dividing $a(n-1)$ divides also $a(n)$ since $r \leq s$. Therefore, there is $k \leq r$ such that $p_{k+1} 2^{2_{k}-1} \mid a(n-1)$ and $p_{k+1} 2^{2_{k}-1} \mid a(n)$ and $e_{k}>f_{k}$.
If $\mathrm{r}<\mathrm{s}$ then $p_{r+1}<p_{s+1}<p_{k+1} 2^{f_{k}} \leq p_{k+1} 2^{e_{k}-1}$ and $\left(\prod_{i=1, i \neq k}^{r} p_{i+1}^{2^{e_{i}-1}}\right) \times p_{k+1}^{2^{e_{k}-1}-1} \times p_{s+1}<a(n-1)$ and has 2^{n-1} odd divisors, contradicting minimality of $a(n-1)$.
If $r=s$ then there are $k, m \leq r$ with $e_{k}>f_{k}$ and $f_{m}>e_{m}$ since $1+\sum_{i=1}^{s} e_{i}=\sum_{i=1}^{s} f_{i}$.
If $\mathrm{k}<\mathrm{m}$ then $e_{k}>f_{k} \geq f_{m}>e_{m}$ so that $p_{k+1}{2^{f_{m}-1}} p_{m+1} 2^{-2_{k}}<1$ and $\left(\prod_{i=1, i \neq k, m}^{s} p_{i+1} 2^{2_{i}-1}\right) \times p_{k+1} 2^{f_{m}-1}-1 \quad \times p_{m+1} 2^{2_{k+1}-1}<$ $a(n)$ has 2^{n} odd divisors, contradicting minimality of $a(n)$.
If $k>m$ then $f_{m}>e_{m} \geq e_{k}>f_{k}$ so that $p_{m+1} 2^{f_{k}-1} \times p_{k+1} 2^{2_{m}}<1$ and $\left(\prod_{i=1, i \neq m, k}^{s} p_{i+1} 2^{f_{i}-1}\right) \times p_{m+1} 2^{f_{k-1}-1} \times p_{k+1} 2^{2_{m+1}-1}<$ $a(n)$ has 2^{n} odd divisors, contradicting minimality of $a(n)$.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Assume that $\mathrm{a}(\mathrm{n}+1)=\prod_{i=1}^{t} p_{i+1}^{2^{g_{i}}-1}$ satisfies properties $(1)-(3), \mathrm{a}(\mathrm{n}) \mid \mathrm{a}(\mathrm{n}+1)$ and $\mathrm{a}(\mathrm{n})=\prod_{i=1}^{s} p_{i+1}^{2^{f_{i}}-1}$ is the least number with 2^{n} odd divisors and thus satisfies (b) by induction. Let $p_{k+1} 2^{2_{k}}=\min \left(p_{i+1} 2^{f_{i}} \mid 1 \leq \mathrm{i}\right.$ $\leq s)$ then
$a(n+1)=\left\{\begin{array}{ll}a(n) \times p_{s+2} & \text { if } p_{s+2}<p_{k+1} 2^{2_{k}} \\ a(n) \times p_{k+1} 2^{2_{k}} & \text { otherwise }\end{array}\right.$ is the smallest number with 2^{n+1} odd divisors.

The efficiency of computing $a(n)$ can be improved significantly by testing the values of the primaries of $a(n)$ only at those indices where a run of identical numbers in the partition of n starts. For example, a(24) would require only 2 instead of 21 computations for determining the minimum of its primaries.

