The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A359801 Number of 4-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages. 3
1, 8, 104, 2944, 108136, 4525888, 204981888, 9792786432, 486323201640, 24874892400064, 1302278744460352, 69474942954714112, 3764568243058030208, 206675027529594291200, 11473858525271117889536, 643154944963894079717376, 36355546411928157876528744, 2070313613815122857027563200 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In Novak's note it is mentioned that if P(z) and Q(z) are the g.f.s for the probabilities of indecomposable and decomposable loops, respectively, that P(z) = 1 - 1/Q(z). This works equally well using loop counts rather than probabilities. The g.f.s may be expressed by the series constructed from the sequences of counts of loops of length 2*n. Q(z) for the 4-d case is the series corresponding to A039699.
To obtain the probability of returning to the point of origin for the first time after 2*n steps, divide a(n) by the total number of walks of length 2*n in d dimensions: (2*d)^(2*n) = 64^n.
LINKS
Dorin Dumitraşcu and Liviu Suciu, Asymptotics for the Number of Random Walks in the Euclidean Lattice, arXiv:2212.01702 [math.CO], 2022, p.11.
Jonathan Novak, Pólya's Random Walk Theorem, The American Mathematical Monthly, Vol. 121, No. 8 (October 2014), pp. 711-716.
FORMULA
G.f.: 2 - 1/Q(x) where Q(x) is the g.f. of A039699.
G.f.: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^4 dt.
MATHEMATICA
walk4d[n_] :=
Sum[(2 n)!/(i! j! k! (n - i - j - k)!)^2, {i, 0, n}, {j, 0,
n - i}, {k, 0, n - i - j}]; invertSeq[seq_] :=
CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk4d[n], {n, 0, 17}]]
PROG
(PARI) seq(n) = {my(v=Vec(2 - 1/serlaplace(besseli(0, 2*x + O(x^(2*n+1)))^4))); vector(n+1, i, v[2*i-1])} \\ Andrew Howroyd, Mar 08 2023
CROSSREFS
Cf. A039699, A287317 (number of walks that return to the origin in 2n steps).
Number of walks that return to the origin for the first time in 2n steps, in 1..3 dimensions: |A002420|, A054474, A049037.
Column k=4 of A361397.
Sequence in context: A141383 A034300 A266044 * A266040 A354173 A146346
KEYWORD
nonn,walk
AUTHOR
Shel Kaphan, Mar 08 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 15:34 EDT 2024. Contains 373272 sequences. (Running on oeis4.)