Notes on A356993

Peter Bala, Oct 092022

Let $A(n)=A 356933(n)$. The definition is

$$
\begin{equation*}
A(n)=a(n-a(n-a(n-a(n)))), \text { for } n \geq 2 \tag{1}
\end{equation*}
$$

where $a(n)=\operatorname{A356988}(n)$ is defined by the nested recurrence

$$
\begin{equation*}
a(n)=n-a(a(n-a(a(a(n-1))))) \tag{2}
\end{equation*}
$$

with the initial condition $\mathrm{a}(1)=1$.

The sequence $\{\mathrm{a}(\mathrm{n})\}$ is slow [1], that is, $a(n+1)-a(n) \in\{0,1\}$ for $n \geq 1$. In general, if the sequences $\{u(n): n \geq 1\}$ and $\{v(n): n \geq 1\}$ are both slow then it is easy to see that (i) the sequence $\{n-u(n)\}$ is slow and (ii) the composition sequence $\{v(u(n))\}$ is slow. It therefore follows from the definition (1) that the sequence $\{A(n)\}$ is slow.

In order to analyse the structure of the sequence $\{A(n)\}$ we will need following facts about A356988.

The terms of A356988 are completely determined by the following two results [1]:
a) for $n>=2$

$$
\begin{equation*}
a(\mathrm{~L}(n-1)+j)=\mathrm{F}(n) \tag{3}
\end{equation*}
$$

for $0<=j<=\mathrm{F}(n-3)$, where $\mathrm{F}(n)=\mathrm{A} 000045(n)$, the n-th Fibonacci number with $\mathrm{F}(-1)=1$ and $\mathrm{L}(n)=\mathrm{A} 000032(n)$, the n-th Lucas number (recall that $\mathrm{L}(n)=\mathrm{F}(n+1)+\mathrm{F}(n-1)$).
b) for $n>=2$,

$$
\begin{equation*}
a(\mathrm{~F}(n+1)+j)=\mathrm{F}(n)+j \tag{4}
\end{equation*}
$$

for $0<=j<=\mathrm{F}(n-1)$.

In addition, we will require the following results, which are easy consequences of (3) and (4):

$$
\begin{gather*}
\mathrm{a}(2 \mathrm{~F}(k))=\mathrm{L}(k-1) \text { for } k \geq 2 \tag{5}\\
\mathrm{a}(3 \mathrm{~F}(k))=2 \mathrm{~F}(k) \text { for } k \geq 1 \tag{6}\\
\mathrm{a}(4 \mathrm{~F}(k))=\mathrm{F}(k-2) \text { for } k \geq 2 \tag{7}\\
\mathrm{a}(4 \mathrm{~F}(k)+F(k-1))=3 \mathrm{~F}(k) \text { for } k \geq 1 \tag{8}
\end{gather*}
$$

For example, to prove (8) we note that $4 \mathrm{~F}(k)+\mathrm{F}(k-1)=\mathrm{F}(k+3)+\mathrm{F}(k-2)$ and hence $a(4 \mathrm{~F}(k)+\mathrm{F}(k-1))=a(\mathrm{~F}(k+3)+\mathrm{F}(k-2))=\mathrm{F}(k+2)+$ $\mathrm{F}(k-2)$ (by $(4))=3 F(k)$.

The structure of $\{A(n)\}$.

The line graph of the sequence $\{A(n)\}$ consists of a series of plateaus (where the value of the ordinate $A(n)$ remains constant as n increases) joined by lines of slope 1. The heights of the plateaus are alternately Fibonacci numbers and Lucas numbers. More precisely, we have

1) $\{A(n)\}$ has the constant value $\mathrm{F}(k)$ on the integer interval $[3 \mathrm{~F}(k), \mathrm{L}(k+1)]$ for $k \geq 3$.

Proof. It suffices to show that the sequence takes on the same value $\mathrm{F}(k)$ at both endpoints of the interval, that is, $A(3 \mathrm{~F}(k))=\mathrm{F}(k)=A(\mathrm{~L}(k+1))$. Then, since the sequence $\{A(n)\}$ is slow, it follows that it must have the constant value $\mathrm{F}(k)$ throughout the integer interval $[3 \mathrm{~F}(k), \mathrm{L}(k+1)]$.

For the left endpoint of the interval we calculate

$$
\begin{aligned}
A(3 \mathrm{~F}(k)) & =a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k))))) \\
& =a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k)-2 \mathrm{~F}(k)))) \text { by }(6) \\
& =a(3 \mathrm{~F}(k)-a(3 \mathrm{~F}(k)-\mathrm{F}(k-1))) \text { by }(4) \\
& =a(3 F(k))-a(\mathrm{~L}(k)+\mathrm{F}(k-4)) \\
& =a(3 \mathrm{~F}(k)-\mathrm{F}(k+1)) \text { by }(3) \\
& =a(\mathrm{~L}(k-1)) \\
& =\mathrm{F}(k) \text { by }(3)
\end{aligned}
$$

where we made use of the easily proved identities

$$
3 \mathrm{~F}(k)-\mathrm{F}(k-1)=\mathrm{L}(k)+\mathrm{F}(k-4) \text { and } 3 \mathrm{~F}(k)-\mathrm{F}(k+1)=\mathrm{L}(k-1)
$$

For the right endpoint of the interval we calculate

$$
\begin{aligned}
A(\mathrm{~L}(k+1)) & =a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1))))) \\
& =a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1)-\mathrm{F}(k+2)))) \text { by }(3) \\
& =a(\mathrm{~L}(k+1)-a(\mathrm{~L}(k+1)-a(\mathrm{~F}(k)))) \\
& =a(\mathrm{~L}(k+1))-a(\mathrm{~L}(k+1)-\mathrm{F}(k-1)) \text { by }(4) \\
& =a(\mathrm{~L}(k+1)-a(3 \mathrm{~F}(k))) \\
& =a(\mathrm{~L}(k+1)-2 \mathrm{~F}(k)) \text { by }(6) \\
& =a(\mathrm{~F}(k+1)) \\
& =\mathrm{F}(k) \text { by }(4)
\end{aligned}
$$

where we made use of the easily proved identities

$$
\mathrm{L}(k+1)=\mathrm{F}(k+2)+\mathrm{F}(k), \mathrm{L}(k+1)-\mathrm{F}(k-1)=3 \mathrm{~F}(k) \text { and } \mathrm{L}(k+1)-2 \mathrm{~F}(k)=\mathrm{F}(k+1)
$$

2) $\{A(n)\}$ has the constant value $\mathrm{L}(k-1)$ on the integer interval $[4 \mathrm{~F}(k), 4 \mathrm{~F}(k)+\mathrm{F}(k-1)]$ for $k \geq 2$.

Proof. Again, by the slowness property of the sequence, it suffices to show that the sequence takes on the same value $\mathrm{L}(k-1)$ at both endpoints of the interval:

$$
A(4 \mathrm{~F}(k))=\mathrm{L}(k-1)=A(4 \mathrm{~F}(k)+\mathrm{F}(k-1))
$$

For the left endpoint of the interval we calculate

$$
\begin{aligned}
A(4 \mathrm{~F}(k)) & =a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k))))) \\
& =a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k)-\mathrm{F}(k+2)))) \text { by }(7) \\
& =a(4 \mathrm{~F}(k)-a(4 \mathrm{~F}(k)-a(\mathrm{~L}(k-1)))) \\
& =a(4 F(k))-a(4 \mathrm{~F}(k)-\mathrm{F}(k)) \text { by }(3) \\
& =a(4 \mathrm{~F}(k)-2 \mathrm{~F}(k)) \text { by }(6) \\
& =\mathrm{L}(k-1) \text { by }(5)
\end{aligned}
$$

where we made use of the easily proved identity

$$
4 \mathrm{~F}(k)-\mathrm{F}(k+2)=\mathrm{L}(k-1)
$$

For the right endpoint of the interval we set $N=4 \mathrm{~F}(k)+\mathrm{F}(k-1)$ and calculate

$$
\begin{aligned}
A(4 \mathrm{~F}(k)+\mathrm{F}(k-1)) & =a(N-a(N-a(N-a(N)))) \\
& =a(N-a(N-a(4 \mathrm{~F}(k)+\mathrm{F}(k-1)-3 \mathrm{~F}(k)))) \text { by }(8) \\
& =a(N-a(N-a(\mathrm{~F}(k+1)))) \\
& =a(N-a(4 \mathrm{~F}(k)+\mathrm{F}(k-1)-\mathrm{F}(k))) \text { by }(4) \\
& =a(4 \mathrm{~F}(k)+\mathrm{F}(k-1)-a(\mathrm{~L}(k+1))) \\
& =a(4 \mathrm{~F}(k)+\mathrm{F}(k-1)-\mathrm{F}(k+2)) \text { by }(3) \\
& =a(2 \mathrm{~F}(k)) \\
& =\mathrm{L}(k-1) \text { by }(5)
\end{aligned}
$$

where we made use of the easily proved identities

$$
4 \mathrm{~F}(k)+\mathrm{F}(k-1)-3 \mathrm{~F}(k)=\mathrm{F}(k+1), 4 \mathrm{~F}(k)+\mathrm{F}(k-1)-\mathrm{F}(k)=\mathrm{L}(k+1)
$$

and

$$
4 \mathrm{~F}(k)+\mathrm{F}(k-1)-\mathrm{F}(k+2)=2 \mathrm{~F}(k)
$$

3) Next we show that on the interval $[\mathrm{L}(k+1), 4 \mathrm{~F}(k)]$ between the intervals $[3 \mathrm{~F}(k), \mathrm{L}(k+1)]$ and $[4 \mathrm{~F}(k), 4 \mathrm{~F}(k)+\mathrm{F}(k-1)]$ the line graph of the sequence $\{A(n)\}$ has constant slope 1 . This is an immediate consequence of the slowness of $\{A(n)\}$ since on the integer interval $[\mathrm{L}(k+1), 4 \mathrm{~F}(k)]$ of length $\mathrm{F}(k-2)$ the sequence increases in value by $A(4 \mathrm{~F}(k))-A(\mathrm{~L}(k+1))=$ $\mathrm{L}(k-1)-\mathrm{F}(k)=\mathrm{F}(k-2)$.
4) By an exactly similar calculation we find the slope of line graph of the sequence is also 1 on the interval from the end of one plateau at abscissa $n=4 \mathrm{~F}(k)+\mathrm{F}(k-1))$ to the start of the next plateau at abscissa $n=3 \mathrm{~F}(k+1)$.

References

[1] Peter Bala, Notes on A356988

