Notes on A356988

Peter Bala, Sep 272022

$a(n)=\mathrm{A} 356988(n)$ is defined by the nested recurrence

$$
\begin{equation*}
a(n)=n-a(a(n-a(a(a(n-1))))) \tag{1}
\end{equation*}
$$

with the initial condition $\mathrm{a}(1)=1$.
If we define the square $a^{(2)}$ and the cube $a^{(3)}$ of the sequence
$a=\{a(n): n \geq 1\}$ by $a^{(2)}=\{a(a(n)): n \geq 1\}$ and $a^{(3)}=\{a(a(a(n))): n \geq 1\}$ then the recurrence (1) can be rewritten as

$$
\begin{equation*}
a(n)=n-a^{(2)}\left(n-a^{(3)}(n-1)\right) \tag{2}
\end{equation*}
$$

An easy induction argument shows that

$$
\begin{equation*}
1 \leq a(n)<n \text { for } n \geq 2 \tag{3}
\end{equation*}
$$

A table of the first few terms of A356988 is shown below. The graph of the sequence appears to consist of a series of plateaus joined by lines of slope 1. Our aim in these notes is to prove the following more precise results completely determining the structure of the sequence:
(i) the plateaus start at abscissa values (shown in red in the table) $n=4,7,11,18,29, \ldots$, given by the sequence of Lucas numbers $(\mathrm{L}(k))_{k>=3}$, and end at abscissa values (shown in green in the table) $n=5,8,13,21,34, \ldots$, given by the Fibonacci sequence $(\mathrm{F}(k+2))_{k \geq 3}$.
(ii) the plateaus are at heights (shown in blue in the table) $3,5,8,13,21, \ldots$, given by the Fibonacci sequence $(\mathrm{F}(k+1))_{k \geq 3}$.
(iii) the plateaus are joined by lines of slope 1 .

$$
\text { Table: } a(n) \text { for } n=1 . .36
$$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$a(n)$	1	1	2	3	3	4	5	5	6	7	8	8	8	9

n	15	16	17	18	19	20	21	22	23	24	25	26	27	28
$a(n)$	10	11	12	13	13	13	13	14	15	16	17	18	19	20

n	29	30	31	32	33	34	35	36	37	38	39	40	41	42
$a(n)$	21	21	21	21	21	21	22	23	24	25	26	27	28	29

First we show that the sequence is monotone and slow-growing.

Definition. A sequence $\{u(n): n \geq 1\}$ is slow if $u(n+1)-u(n)=\epsilon$ for $n \geq 1$, where the symbol ϵ denotes a quantity that only takes on the value 0 or 1. Note that the expression $1-\epsilon$ also has the value either 0 or 1 .

Proposition 1. A356988 is slow: for $n \geq 1$

$$
\begin{equation*}
a(n+1)-a(n)=\epsilon \tag{4}
\end{equation*}
$$

Proof. By strong induction. By inspection, (4) holds for $n=1$. Assume (4) holds up to $n=N$, that is,

$$
\begin{equation*}
a(k+1)-a(k)=\epsilon, 1 \leq k \leq N \tag{5}
\end{equation*}
$$

It follows from (3) and the inductive hypothesis (5) that

$$
\begin{equation*}
a^{(2)}(k+1)-a^{(2)}(k)=\epsilon, 1 \leq k \leq N \tag{6}
\end{equation*}
$$

and hence also

$$
\begin{equation*}
a^{(3)}(k+1)-a^{(3)}(k)=\epsilon, 1 \leq k \leq N \tag{7}
\end{equation*}
$$

In particular from (7)

$$
\begin{equation*}
a^{(3)}(N+1)-a^{(3)}(N)=\epsilon \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\left(N+2-a^{(3)}(N+1)\right)-\left(N+1-a^{(3)}(N)\right) & =1-\left(a^{(3)}(N+1)-a^{(3)}(N)\right) \\
& =1-\epsilon \text { by }(8) \\
& =\epsilon \tag{9}
\end{align*}
$$

Set $k=N+1-a^{(3)}(N)$. We see from (3) that $1 \leq k \leq N$. It then follows from (6) and (9) that

$$
\begin{equation*}
a^{(2)}\left(N+2-a^{(3)}(N+1)\right)-a^{(2)}\left(N+1-a^{(3)}(N)\right)=\epsilon \tag{10}
\end{equation*}
$$

Therefore, from the defining recurrence (2),

$$
\begin{aligned}
a(N+2)-a(N+1) & =1-a^{(2)}\left(N+2-a^{(3)}(N+1)\right)+a^{(2)}\left(N+1-a^{(3)}(N)\right) \\
& =1-\epsilon
\end{aligned}
$$

by (10). Since $1-\epsilon=\epsilon$, this completes the inductive argument.
The structure of A356988 Let $\mathrm{F}(n)=\mathrm{A} 000045(n)$ denote the n-th Fibonacci number (we will also require the value $\mathrm{F}(-1)=1$). Let $\mathrm{L}(n)=$ $\mathrm{A} 000032(n)$ denote the n-th Lucas number. Recall that $\mathrm{L}(n)=\mathrm{F}(n+1)+$ $\mathrm{F}(n-1)$.

Proposition 2. The following hold for $n>=2$:
(i) on the integer interval $[\mathrm{L}(n-1), \mathrm{F}(n+1)]$ of length $\mathrm{F}(n-3)$ the sequence has the constant value $\mathrm{F}(n)$
(ii) on the integer interval $[\mathrm{F}(n+1), \mathrm{L}(n)]$ of length $\mathrm{F}(n-1)$ the graph of the sequence has slope 1 .

Proof. The proof is by a layered induction argument requiring secondary induction arguments within the main induction argument. Let $k \geq 2$. We define the pair of statements $\mathrm{P}(k)$ and $\mathrm{R}(k)$ as follows:

$$
\begin{gathered}
a(\mathrm{~L}(k-1)+j)=\mathrm{F}(k) \text { holds for } 0 \leq j \leq \mathrm{F}(k-3) \quad[\mathrm{P}(k)] \\
a(\mathrm{~F}(k+1)+j)=\mathrm{F}(k)+j \text { holds for } 0 \leq j \leq \mathrm{F}(k-1) \quad[\mathrm{R}(k)]
\end{gathered}
$$

and make the inductive hypothesis that the statements $\mathrm{P}(n-1), \mathrm{R}(n-1)$, $\mathrm{R}(n)$ and $\mathrm{P}(n)$ are true for some $n \geq 3$. The base case when $n=3$ is easily checked. We wish to prove that $\mathrm{P}(n+1)$ and $\mathrm{R}(n+1)$ are true. First we prove $\mathrm{P}(n+1)$, that is,

$$
a(\mathrm{~L}(n)+j)=\mathrm{F}(n+1) \text { holds for } 0 \leq j \leq \mathrm{F}(n-2) \quad[\mathrm{P}(n+1)]
$$

by a secondary induction on j.

The base case $j=0$ of $\mathrm{P}(n+1)$ says that $a(\mathrm{~L}(n))=\mathrm{F}(n+1)$, but this is simply the final case $j=\mathrm{F}(n-1)$ in $\mathrm{R}(n)$. Suppose now $a(\mathrm{~L}(n)+j)=$ $\mathrm{F}(n+1)$ holds for some j in the range $0 \leq j<\mathrm{F}(n-2)$.

Then by (2),

$$
\begin{aligned}
a(\mathrm{~L}(n)+j+1) & =\mathrm{L}(n)+j+1-a^{(2)}\left(L(n)+j+1-a^{(3)}(\mathrm{L}(n)+j)\right) \\
& =\mathrm{L}(n)+j+1-a^{(2)}\left(j+1+\mathrm{L}(n)-a^{(2)}(\mathrm{F}(n+1))\right) \\
& =\mathrm{L}(n)+j+1-a^{(2)}(j+1+\mathrm{L}(n)-\mathrm{F}(n-1)) \text { by } \mathrm{R}(n) \text { and } \mathrm{R}(n-1) \\
& =\mathrm{L}(n)+j+1-a^{(2)}(j+1+\mathrm{F}(n+1)) \\
& =\mathrm{L}(n)+j+1-(j+1+\mathrm{F}(n-1)) \text { by } \mathrm{R}(n) \text { and } \mathrm{R}(n-1) \\
& =\mathrm{F}(n+1)
\end{aligned}
$$

and the induction goes through. This completes the proof of $\mathrm{P}(n+1)$.

We now turn our attention to proving $\mathrm{R}(n+1)$, which states that on the interval $[\mathrm{F}(n+2), \mathrm{L}(n+1)]$ of length $\mathrm{F}(n)$ the line graph of the sequence has slope 1 , that is,

$$
a(\mathrm{~F}(n+2)+j)=\mathrm{F}(n+1)+j \text { holds for } 0 \leq j \leq \mathrm{F}(n) \quad[\mathrm{R}(\mathrm{n}+1)]
$$

The proof is in three stages, each stage requiring an induction argument on j. Since $\mathrm{F}(n)=\mathrm{F}(n-2)+\mathrm{F}(n-3)+\mathrm{F}(n-2)$, the interval $[\mathrm{F}(n+2), \mathrm{L}(n+1)]$ can be split into three subintervals $[\mathrm{F}(n+2), \mathrm{F}(n+2)+\mathrm{F}(n-2)]$, $[\mathrm{F}(n+2)+\mathrm{F}(n-2), \mathrm{F}(n+2)+\mathrm{F}(n-1)]$ and $[\mathrm{F}(n+2)+\mathrm{F}(n-1), \mathrm{L}(n+1)]$.

Stage 1: On the first subinterval $[\mathrm{F}(n+2), \mathrm{F}(n+2)+\mathrm{F}(n-2)]$ of length $\mathrm{F}(n-2)$ we make the inductive hypothesis that

$$
\begin{equation*}
a(\mathrm{~F}(n+2)+j)=\mathrm{F}(n+1)+j \tag{H1}
\end{equation*}
$$

holds for some j in the range $0 \leq j<\mathrm{F}(n-2)$. The base case $j=0$ for the induction is simply the final case $j=\mathrm{F}(n-2)$ of $\mathrm{P}(n+1)$.

Then by (2),

$$
\begin{aligned}
a(\mathrm{~F}(n+2)+j+1) & =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(3)}(\mathrm{F}(n+2)+j)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+j)\right) \text { by } \mathrm{H} 1 \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n)+j) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-(\mathrm{F}(n-1)+j)) \text { by } \mathrm{R}(n-1) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(1+\mathrm{F}(n+2)-\mathrm{F}(n-1)) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+1+\mathrm{F}(n-2)) \\
& =\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n)+1+\mathrm{F}(n-2)) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+2)+j+1-a(\mathrm{~L}(n-1)+1) \\
& =\mathrm{F}(n+2)+j+1-\mathrm{F}(n) \text { by } \mathrm{P}(n) \\
& =\mathrm{F}(n+1)+j+1
\end{aligned}
$$

thus completing the induction argument on the first subinterval.
Stage 2. On the second subinterval $[\mathrm{F}(n+2)+\mathrm{F}(n-2), \mathrm{F}(n+2)+\mathrm{F}(n-1)]$ of length $\mathrm{F}(n-3)$ we make the inductive hypothesis that

$$
\begin{equation*}
a(\mathrm{~F}(n+2)+j)=\mathrm{F}(n+1)+j \tag{H2}
\end{equation*}
$$

holds for some j in the range $\mathrm{F}(n-2) \leq j<\mathrm{F}(n-1)$. The base case for the induction when $j=\mathrm{F}(n-2)$ is simply the final case of H1 established above in stage 1. Define j^{\prime} by $j=\mathrm{F}(n-2)+j^{\prime}$, so that $0 \leq j^{\prime}<\mathrm{F}(n-1)-\mathrm{F}(n-2)$, that is, $0 \leq j^{\prime}<\mathrm{F}(n-3)$.

Then by (2),

$$
\begin{aligned}
a(\mathrm{~F}(n+2)+j+1) & =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(3)}(\mathrm{F}(n+2)+j)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+j)\right) \text { by } \mathrm{H} 2 \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n)+j) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a\left(\mathrm{~L}(n-1)+j^{\prime}\right)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-\mathrm{F}(n)) \text { by } \mathrm{P}(n) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+j+1)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n)+j+1) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+2)+j+1-a\left(\mathrm{~F}(n)+\mathrm{F}(n-2)+j^{\prime}+1\right) \\
& =\mathrm{F}(n+2)+j+1-a\left(\mathrm{~L}(n-1)+j^{\prime}+1\right) \\
& =\mathrm{F}(n+2)+j+1-\mathrm{F}(n) \text { by } \mathrm{P}(n) \\
& =\mathrm{F}(n+1)+j+1
\end{aligned}
$$

thus completing the induction argument on the second subinterval.

Stage 3. On the third subinterval $[\mathrm{F}(n+2)+F(n-1), \mathrm{L}(n+1)]$ of length $\mathrm{F}(n-2)$ the inductive hypothesis is that

$$
\begin{equation*}
a(\mathrm{~F}(n+2)+j)=\mathrm{F}(n+1)+j \tag{H3}
\end{equation*}
$$

holds for some j in the range $\mathrm{F}(n-1) \leq j<\mathrm{L}(n+1)-\mathrm{F}(n+2)$, that is, for some j in the range $\mathrm{F}(n-1) \leq j<\mathrm{F}(n)$.

Define j^{\prime} by $j=\mathrm{F}(n-1)+j^{\prime}$, so that $0 \leq j^{\prime}<\mathrm{F}(n)-\mathrm{F}(n-1)$, that is, $0 \leq j^{\prime}<\mathrm{F}(n-2)$.

The base case for the induction when $j^{\prime}=0$ is simply the final case of H 2 established in stage 2 above.

Then by (2),

$$
\begin{aligned}
a(\mathrm{~F}(n+2)+j+1) & =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(3)}(\mathrm{F}(n+2)+j)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+j)\right) \text { by } \mathrm{H} 3 \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+1)+\mathrm{F}(n-1)+j^{\prime}\right)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{L}(n)+j^{\prime}\right)\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n+1)) \text { by } \mathrm{P}(n+1) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+2)+j+1-\mathrm{F}(n)) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}(\mathrm{F}(n+1)+j+1) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{F}(n+1)+\mathrm{F}(n-1)+j^{\prime}\right) \\
& =\mathrm{F}(n+2)+j+1-a^{(2)}\left(\mathrm{L}(n)+j^{\prime}\right) \\
& =\mathrm{F}(n+2)+j+1-a(\mathrm{~F}(n+1)) \text { by } \mathrm{P}(n+1) \\
& =\mathrm{F}(n+2)+j+1-\mathrm{F}(n) \text { by } \mathrm{R}(n) \\
& =\mathrm{F}(n+1)+j+1 .
\end{aligned}
$$

This finishes the proof of $\mathrm{R}(n+1)$ and completes the proof of the main induction argument, thus establishing the proposition.

Related slow sequences. The following statements about slow sequences are easily proved.

If the sequences $\{u(n): n \geq 1\}$ and $\{v(n): n \geq 1\}$ are both slow then
(i) the sequence $\{n-u(n)\}$ is slow.
(ii) consequently, the sequences $\{n-u(n-u(n))\},\{n-u(n-u(n-u(n)))\}$, ..., are all slow.
(iii) the iterated sequences $\{u(u(n))\},\{u(u(u(n)))\}, \ldots$ are slow.
(iv) the sequence $u(n)+v(n-u(n))$ is slow.
(v) the composition sequence $\{u(v(n))\}$ is slow.

Starting with the slow sequence $\{a(n)\}$ we can use these observations to construct several other slow sequences of interest. We finish with a few examples.

Examples

1. The sequence $\{a(n)+a(n-a(n)): n \geq 2\}$ submitted as A356991 is slow.

The first few terms of the sequence are $2,3,4,4,5,6,7,8,9,10,11,11,12$, $13,14,15,16,17,18,18,19,20,21,22,23,24,25,26,27,28,29,29,29,30$, $31, \ldots$. The graph of the sequence has plateaus at heights $4,(7), 11,18,29, \ldots$, the Lucas numbers.
2. The sequence $\{n-a(n-a(n-a(n-a(n-a(n-a(n)))))): n \geq 2\}$ submitted as A356992 is slow.

The first few terms of the sequence are $1,2,3,4,4,4,5,6,7,7,7,8,9,10,11$, $11,11,11,12,13,14,15,16,17,18,18,18,18,18,18,19,20,21,22,23,24,25$, $26,27,28,29,29,29,29,29,29,29,29,29,30, \ldots$. The graph of the sequence has plateaus at heights $4,7,11,18,29, \ldots$, conjecturally the Lucas numbers.
3. The sequence $\{a(n-a(n-a(n-a(n-a(n))))): n \geq 2\}$ submitted as A356993 is slow.

The first few terms of the sequence are $1,1,2,3,3,3,3,4,5,5,5,6,7,7,8,8$, $8,8,8,9,10,11,11,12,13,13,13,13,13,13,13,14,15,16,17,18,18,18,19$, $20,21,21,21,21,21,21,21,21,21,21,21,22,23,24,25,26,27,28,29,29$, $29,29,30,31, \ldots$. The heights of the plateaus beginning $3,(4), 5,7,8,11,13$, $21,29, \ldots$ appear to be alternately Fibonacci numbers and Lucas numbers.
4. The sequence $\left\{n-a^{3}(n): n \geq 1\right\}$ submitted as A356994 is slow.

The first few terms of the sequence are $0,1,2,3,4,4,5,6,6,7,8,9,10,10$, $10,11,12,13,14,15,16,16,16,16,17,18,19,20,21,22,23,24,25,26,26$, $26,26,26,26,27, \ldots$ The graph of the sequence has plateaus at heights $4,6,10,16,26, \ldots$, double the Fibonacci numbers.

