Proof that A356635 consists of all numbers divisible by at least one of $\mathbf{7 , 8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 2}, \mathbf{1 5}, \mathbf{2 2}, \mathbf{3 3}, \mathbf{3 9}, 52$, 55, 68, 102, 114, 138.

Robert Israel

2 Sep 2022
We consider all positive integer solutions of the equation $1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}$. Without loss of generality, we may assume $a \leq b \leq c \leq d \leq e \leq f \leq g$. In particular,

$$
\begin{aligned}
\frac{7}{a} & \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}=1 \text { so } a \leq 7 . \text { Similarly, given } a, \frac{6}{b} \geq \frac{1}{b}+\frac{1}{c} \\
& +\frac{1}{d}+\frac{1}{e}+\frac{1}{f}+\frac{1}{g}=1-\frac{1}{a}, \text { so } b \leq \frac{6}{1-\frac{1}{a}} . \text { On the other hand, } \frac{1}{a}+\frac{1}{b}<1 \text { so } b
\end{aligned}
$$

$>\frac{1}{1-\frac{1}{a}}$. Similarly we can get upper and lower bounds for each of the variables in terms of the previous ones, and enumerate all solutions $[a, b, c, d, e, f, g]$ using the following Maple program.

```
> R:= NULL:
    for a from 2 to 7 do
        x:= 1-1/a;
        for b from max(a,1+floor(1/x)) to floor(6/x) do
        y:= x-1/b;
        for c from max(b,1+floor(1/y)) to floor(5/y) do
            z:= y-1/c;
            for d from max(c,1+floor(1/z)) to floor(4/z) do
                w:= z-1/d;
                for e from max(d,1+floor(1/w)) to floor(3/w) do
                    v:= w-1/e;
                        for f from max(e,1+floor(1/v)) to floor(2/v) do
                            g:= 1/(v-1/f); if g::integer and g >= f then R:= R,
    [a,b,c,d,e,f,g] fi
    od od od od od od:
```

nops ([R])

$$
\begin{equation*}
294314 \tag{1}
\end{equation*}
$$

It turns out there are 294314 solutions with $a \leq b \leq c \leq d \leq e \leq f \leq g$. Each corresponds to a possible pattern $k=\frac{k}{a}+\frac{k}{b}+\frac{k}{c}+\frac{k}{d}+\frac{k}{e}+\frac{k}{f}+\frac{k}{g}$ for writing k as the sum of 7 of its divisors which works if and only if k is divisible by each of a, b, c, d, e, f, g and thus by $l c m(a, b, c, d, e, f, g)$. We find all these lcm's. [$>$ Lcms:= map(ilcm, \{R\}):

LNow we find a minimal set such that all these lcm's are divisible by a member of the set.

```
> S:= Lcms: S1:= {}:
    while S <> {} do
    s:= min(S); S1:= S1 union {s};
    S:= remove(t -> t mod s = 0, S);
    od:
```

Here are the results:
> S1;

$$
\begin{equation*}
\{7,8,9,10,12,15,22,33,39,52,55,68,102,114,138\} \tag{2}
\end{equation*}
$$

Thus we conclude that k is a member of A356635 if and only if it is divisible by at least one of the numbers $7,8,9,10,12,15,22,33,39,52,55,68,102,114,138$.
Let us find solutions corresponding to each of these.

```
\(>\) for \(m\) in \(S 1\) do
            \(\mathrm{E}:=\) select(t -> ilcm(t) \(=\mathrm{m}\), [R]) [1];
            printf("if \(k\) is divisible by \%d, then \(k=k / \% d+k / \% d+k / \% d+\)
        \(k / \% d+k / \% d+k / \% d+k / \% d \backslash n ", m, s e q(E[i], i=1 . .7))\)
        od:
    if \(k\) is divisible by 7, then \(k=k / 7+k / 7+k / 7+k / 7+k / 7+k / 7+\)
        k/7
    if \(k\) is divisible by 8 , then \(k=k / 4+k / 8+k / 8+k / 8+k / 8+k / 8+\)
    k/8
    if \(k\) is divisible by 9 , then \(k=k / 3+k / 9+k / 9+k / 9+k / 9+k / 9+\)
    k/9
    if \(k\) is divisible by 10 , then \(k=k / 5+k / 5+k / 5+k / 10+k / 10+\)
    k/10 + k/10
    if \(k\) is divisible by 12, then \(k=k / 2+k / 12+k / 12+k / 12+k / 12+\)
    k/12 + k/12
    if \(k\) is divisible by 15, then \(k=k / 3+k / 3+k / 15+k / 15+k / 15+\)
    k/15 + k/15
    if \(k\) is divisible by 22, then \(k=k / 2+k / 11+k / 11+k / 11+k / 11+\)
    \(k / 11+k / 22\)
    if k is divisible by 33, then \(k=k / 3+k / 3+k / 11+k / 11+k / 11+\)
    \(k / 33+k / 33\)
    if \(k\) is divisible by 39, then \(k=k / 3+k / 3+k / 13+k / 13+k / 13+\)
    \(k / 13+k / 39\)
    if \(k\) is divisible by 52, then \(k=k / 2+k / 4+k / 13+k / 13+k / 26+\)
    k/26 + k/52
    if \(k\) is divisible by 55, then \(k=k / 5+k / 5+k / 5+k / 5+k / 11+k / 11\)
    + k/55
    if \(k\) is divisible by 68, then \(k=k / 2+k / 4+k / 17+k / 17+k / 17+\)
    k/17 + k/68
    if k is divisible by 102, then \(k=k / 2+k / 3+k / 17+k / 17+k / 34+\)
    k/102 + k/102
    if \(k\) is divisible by 114, then \(k=k / 2+k / 3+k / 19+k / 19+k / 38+\)
    \(\mathrm{k} / 38+\mathrm{k} / 114\)
    if \(k\) is divisible by 138, then \(k=k / 2+k / 3+k / 23+k / 23+k / 23+\)
    k/46 + k/69
```

